import numpy as np import numba as nb @nb.jit(nopython=True) def mas(attn_map, width=1): # assumes mel x text opt = np.zeros_like(attn_map) attn_map = np.log(attn_map) attn_map[0, 1:] = -np.inf log_p = np.zeros_like(attn_map) log_p[0, :] = attn_map[0, :] prev_ind = np.zeros_like(attn_map, dtype=np.int64) for i in range(1, attn_map.shape[0]): for j in range(attn_map.shape[1]): # for each text dim prev_j = np.arange(max(0, j - width), j + 1) prev_log = np.array([log_p[i - 1, prev_idx] for prev_idx in prev_j]) ind = np.argmax(prev_log) log_p[i, j] = attn_map[i, j] + prev_log[ind] prev_ind[i, j] = prev_j[ind] # now backtrack curr_text_idx = attn_map.shape[1] - 1 for i in range(attn_map.shape[0] - 1, -1, -1): opt[i, curr_text_idx] = 1 curr_text_idx = prev_ind[i, curr_text_idx] opt[0, curr_text_idx] = 1 return opt @nb.jit(nopython=True) def mas_width1(attn_map): """mas with hardcoded width=1""" # assumes mel x text opt = np.zeros_like(attn_map) attn_map = np.log(attn_map) attn_map[0, 1:] = -np.inf log_p = np.zeros_like(attn_map) log_p[0, :] = attn_map[0, :] prev_ind = np.zeros_like(attn_map, dtype=np.int64) for i in range(1, attn_map.shape[0]): for j in range(attn_map.shape[1]): # for each text dim prev_log = log_p[i - 1, j] prev_j = j if j - 1 >= 0 and log_p[i - 1, j - 1] >= log_p[i - 1, j]: prev_log = log_p[i - 1, j - 1] prev_j = j - 1 log_p[i, j] = attn_map[i, j] + prev_log prev_ind[i, j] = prev_j # now backtrack curr_text_idx = attn_map.shape[1] - 1 for i in range(attn_map.shape[0] - 1, -1, -1): opt[i, curr_text_idx] = 1 curr_text_idx = prev_ind[i, curr_text_idx] opt[0, curr_text_idx] = 1 return opt @nb.jit(nopython=True, parallel=True) def b_mas(b_attn_map, in_lens, out_lens, width=1): assert width == 1 attn_out = np.zeros_like(b_attn_map) for b in nb.prange(b_attn_map.shape[0]): out = mas_width1(b_attn_map[b, 0, : out_lens[b], : in_lens[b]]) attn_out[b, 0, : out_lens[b], : in_lens[b]] = out return attn_out