# general settings name: vq_weight_dehaze_trained_on_ours model_type: VQDehazeModel scale: &upscale 1 num_gpu: 4 # set num_gpu: 0 for cpu mode manual_seed: 0 # dataset and data loader settings datasets: train: name: General_Image_Train type: HazeOnlineDataset dataroot_gt: datasets/rgb_500 dataroot_depth: datasets/depth_500 beta_range: [0.3, 1.5] A_range: [0.25, 1.0] color_p: 1.0 color_range: [-0.025, 0.025] io_backend: type: disk gt_size: 256 use_resize_crop: true use_flip: true use_rot: false # data loader use_shuffle: true batch_size_per_gpu: &bsz 4 num_worker_per_gpu: *bsz dataset_enlarge_ratio: 1 prefetch_mode: cpu num_prefetch_queue: *bsz val: name: General_Image_Train type: HazeOnlineDataset dataroot_gt: datasets/rgb_500 dataroot_depth: datasets/depth_500 beta_range: [0.3, 1.5] A_range: [0.25, 1.0] color_p: 1.0 color_range: [-0.025, 0.025] io_backend: type: disk # network structures network_g: type: VQWeightDehazeNet gt_resolution: 256 norm_type: 'gn' act_type: 'silu' scale_factor: *upscale codebook_params: - [64, 1024, 512] LQ_stage: true use_weight: false weight_alpha: -1.0 frozen_module_keywords: ['quantize', 'decoder_group', 'after_quant_group', 'out_conv'] network_d: type: UNetDiscriminatorSN num_in_ch: 512 # path path: pretrain_network_hq: pretrained_models/pretrained_HQPs.pth pretrain_network_g: pretrain_network_d: ~ strict_load: false # resume_state: ~ # training settings train: optim_g: type: Adam lr: !!float 1e-4 weight_decay: 0 betas: [0.9, 0.99] optim_d: type: Adam lr: !!float 4e-4 weight_decay: 0 betas: [0.9, 0.99] scheduler: type: MultiStepLR milestones: [5000, 10000, 15000, 20000, 250000, 300000, 350000] gamma: 1 total_iter: 45000 warmup_iter: -1 # no warm up # losses pixel_opt: type: L1Loss loss_weight: 1.0 reduction: mean perceptual_opt: type: LPIPSLoss loss_weight: !!float 1.0 gan_opt: type: GANLoss gan_type: hinge real_label_val: 1.0 fake_label_val: 0.0 loss_weight: 0.1 codebook_opt: loss_weight: 1.0 semantic_opt: loss_weight: 0.1 net_d_iters: 1 net_d_init_iters: !!float 0 # validation settingsĀ· val: val_freq: !!float 80000 save_img: true key_metric: psnr metrics: psnr: # metric name, can be arbitrary type: psnr crop_border: 4 test_y_channel: true ssim: type: ssim crop_border: 4 test_y_channel: true lpips: type: lpips better: lower # logging settings logger: print_freq: 10 save_checkpoint_freq: !!float 1e3 save_latest_freq: !!float 5e2 show_tf_imgs_freq: !!float 1e2 use_tb_logger: true