# Copyright (c) 2021-2022, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch def update_argparser(parser): parser.add_argument( "--config", default="resnet50", type=str, required=True, help="Network to deploy") parser.add_argument( "--checkpoint", default=None, type=str, help="The checkpoint of the model. ") parser.add_argument("--classes", type=int, default=1000, help="Number of classes") parser.add_argument("--precision", type=str, default="fp32", choices=["fp32", "fp16"], help="Inference precision") def get_model(**model_args): from image_classification import models model = models.resnet50(pretrained=False) if "checkpoint" in model_args: print(f"loading checkpoint {model_args['checkpoint']}") state_dict = torch.load(model_args["checkpoint"], map_location="cpu") try: model.load_state_dict( { k.replace("module.", ""): v for k, v in state_dict.items() } ) except RuntimeError as RE: if not hasattr(model, "ngc_checkpoint_remap"): raise RE remap_old = model.ngc_checkpoint_remap(version="20.06.0") remap_dist = lambda k: k.replace("module.", "") model.load_state_dict( { remap_old(remap_dist(k)): v for k, v in state_dict.items() } ) if model_args["precision"] == "fp16": model = model.half() model = model.cuda() model.eval() tensor_names = {"inputs": ["INPUT__0"], "outputs": ["OUTPUT__0"]} return model, tensor_names