# Copyright (c) 2021-2022, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import Any, Dict, List, NamedTuple, Optional import numpy as np from deployment_toolkit.core import BaseMetricsCalculator class MetricsCalculator(BaseMetricsCalculator): def __init__(self): pass def calc( self, *, ids: List[Any], y_pred: Dict[str, np.ndarray], x: Optional[Dict[str, np.ndarray]], y_real: Optional[Dict[str, np.ndarray]], ) -> Dict[str, float]: categories = np.argmax(y_pred["OUTPUT__0"], axis=-1) print(categories.shape) print(categories[:128], y_pred["OUTPUT__0"] ) print(y_real["OUTPUT__0"][:128]) return { "accuracy": np.mean(np.argmax(y_pred["OUTPUT__0"], axis=-1) == np.argmax(y_real["OUTPUT__0"], axis=-1)) }