#!/usr/bin/python # Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import sys import os import torch import argparse import triton.deployer_lib as deployer_lib def get_model_args(model_args): """ the arguments initialize_model will receive """ parser = argparse.ArgumentParser() ## Required parameters by the model. parser.add_argument( "--config", default="resnet50", type=str, required=True, help="Network to deploy", ) parser.add_argument( "--checkpoint", default=None, type=str, help="The checkpoint of the model. " ) parser.add_argument( "--batch_size", default=1000, type=int, help="Batch size for inference" ) parser.add_argument( "--fp16", default=False, action="store_true", help="FP16 inference" ) parser.add_argument( "--dump_perf_data", type=str, default=None, help="Directory to dump perf data sample for testing", ) return parser.parse_args(model_args) def initialize_model(args): """ return model, ready to trace """ from image_classification.resnet import build_resnet model = build_resnet(args.config, "fanin", 1000, fused_se=False) if args.checkpoint: state_dict = torch.load(args.checkpoint, map_location="cpu") model.load_state_dict( {k.replace("module.", ""): v for k, v in state_dict.items()} ) model.load_state_dict(state_dict) return model.half() if args.fp16 else model def get_dataloader(args): """ return dataloader for inference """ from image_classification.dataloaders import get_synthetic_loader def data_loader(): loader, _ = get_synthetic_loader(None, 128, 1000, True, fp16=args.fp16) processed = 0 for inp, _ in loader: yield inp processed += 1 if processed > 10: break return data_loader() if __name__ == "__main__": # don't touch this! deployer, model_argv = deployer_lib.create_deployer( sys.argv[1:] ) # deployer and returns removed deployer arguments model_args = get_model_args(model_argv) model = initialize_model(model_args) dataloader = get_dataloader(model_args) if model_args.dump_perf_data: input_0 = next(iter(dataloader)) if model_args.fp16: input_0 = input_0.half() os.makedirs(model_args.dump_perf_data, exist_ok=True) input_0.detach().cpu().numpy()[0].tofile( os.path.join(model_args.dump_perf_data, "input__0") ) deployer.deploy(dataloader, model)