# Copyright (c) 2020 NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import json import os import numpy as np import torch import torchvision.datasets as datasets import torchvision.transforms as transforms from image_classification.dataloaders import get_pytorch_val_loader from tqdm import tqdm import tritongrpcclient from tritonclientutils import InferenceServerException def get_data_loader(batch_size, *, data_path): valdir = os.path.join(data_path, "val-jpeg") val_dataset = datasets.ImageFolder( valdir, transforms.Compose( [transforms.Resize(256), transforms.CenterCrop(224), transforms.ToTensor()] ), ) val_loader = torch.utils.data.DataLoader( val_dataset, batch_size=batch_size, shuffle=False ) return val_loader if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument( "--triton-server-url", type=str, required=True, help="URL adress of trtion server (with port)", ) parser.add_argument( "--triton-model-name", type=str, required=True, help="Triton deployed model name", ) parser.add_argument( "-v", "--verbose", action="store_true", default=False, help="Verbose mode." ) parser.add_argument( "--inference_data", type=str, help="Path to file with inference data." ) parser.add_argument( "--batch_size", type=int, default=1, help="Inference request batch size" ) parser.add_argument( "--fp16", action="store_true", default=False, help="Use fp16 precision for input data", ) FLAGS = parser.parse_args() triton_client = tritongrpcclient.InferenceServerClient( url=FLAGS.triton_server_url, verbose=FLAGS.verbose ) dataloader = get_data_loader(FLAGS.batch_size, data_path=FLAGS.inference_data) inputs = [] inputs.append( tritongrpcclient.InferInput( "input__0", [FLAGS.batch_size, 3, 224, 224], "FP16" if FLAGS.fp16 else "FP32", ) ) outputs = [] outputs.append(tritongrpcclient.InferRequestedOutput("output__0")) all_img = 0 cor_img = 0 result_prev = None for image, target in tqdm(dataloader): if FLAGS.fp16: image = image.half() inputs[0].set_data_from_numpy(image.numpy()) result = triton_client.infer( FLAGS.triton_model_name, inputs, outputs=outputs, headers=None ) result = result.as_numpy("output__0") result = np.argmax(result, axis=1) cor_img += np.sum(result == target.numpy()) all_img += result.shape[0] acc = cor_img / all_img print(f"Final accuracy {acc:.04f}")