# Copyright (c) 2018-2019, NVIDIA CORPORATION # Copyright (c) 2017- Facebook, Inc # # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # * Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # * Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # * Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. import math import os import numpy as np import torch import shutil import signal import torch.distributed as dist class Checkpointer: def __init__(self, last_filename, checkpoint_dir="./", keep_last_n=0): self.last_filename = last_filename self.checkpoints = [] self.checkpoint_dir = checkpoint_dir self.keep_last_n = keep_last_n def cleanup(self): to_delete = self.checkpoints[: -self.keep_last_n] self.checkpoints = self.checkpoints[-self.keep_last_n :] for f in to_delete: full_path = os.path.join(self.checkpoint_dir, f) os.remove(full_path) def get_full_path(self, filename): return os.path.join(self.checkpoint_dir, filename) def save_checkpoint( self, state, is_best, filename, ): if torch.distributed.is_initialized() and torch.distributed.get_rank() != 0: assert False full_path = self.get_full_path(filename) print("SAVING {}".format(full_path)) torch.save(state, full_path) self.checkpoints.append(filename) shutil.copyfile( full_path, self.get_full_path(self.last_filename) ) if is_best: shutil.copyfile( full_path, self.get_full_path("model_best.pth.tar") ) self.cleanup() def timed_generator(gen): start = time.time() for g in gen: end = time.time() t = end - start yield g, t start = time.time() def timed_function(f): def _timed_function(*args, **kwargs): start = time.time() ret = f(*args, **kwargs) return ret, time.time() - start return _timed_function def accuracy(output, target, topk=(1,)): """Computes the precision@k for the specified values of k""" maxk = max(topk) batch_size = target.size(0) _, pred = output.topk(maxk, 1, True, True) pred = pred.t() correct = pred.eq(target.view(1, -1).expand_as(pred)) res = [] for k in topk: correct_k = correct[:k].float().sum() res.append(correct_k.mul_(100.0 / batch_size)) return res def reduce_tensor(tensor): rt = tensor.clone().detach() dist.all_reduce(rt, op=dist.ReduceOp.SUM) rt /= ( torch.distributed.get_world_size() if torch.distributed.is_initialized() else 1 ) return rt def first_n(n, generator): for i, d in zip(range(n), generator): yield d class TimeoutHandler: def __init__(self, sig=signal.SIGTERM): self.sig = sig self.device = torch.device("cuda") @property def interrupted(self): if not dist.is_initialized(): return self._interrupted interrupted = torch.tensor(self._interrupted).int().to(self.device) dist.broadcast(interrupted, 0) interrupted = bool(interrupted.item()) return interrupted def __enter__(self): self._interrupted = False self.released = False self.original_handler = signal.getsignal(self.sig) def master_handler(signum, frame): self.release() self._interrupted = True print(f"Received SIGTERM") def ignoring_handler(signum, frame): self.release() print("Received SIGTERM, ignoring") rank = dist.get_rank() if dist.is_initialized() else 0 if rank == 0: signal.signal(self.sig, master_handler) else: signal.signal(self.sig, ignoring_handler) return self def __exit__(self, type, value, tb): self.release() def release(self): if self.released: return False signal.signal(self.sig, self.original_handler) self.released = True return True def calc_ips(batch_size, time): world_size = ( torch.distributed.get_world_size() if torch.distributed.is_initialized() else 1 ) tbs = world_size * batch_size return tbs / time