# Copyright (c) 2018-2019, NVIDIA CORPORATION # Copyright (c) 2017- Facebook, Inc # # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # * Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # * Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # * Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. import os import torch import numpy as np import torchvision.datasets as datasets import torchvision.transforms as transforms from PIL import Image from functools import partial from torchvision.transforms.functional import InterpolationMode from image_classification.autoaugment import AutoaugmentImageNetPolicy DATA_BACKEND_CHOICES = ["pytorch", "synthetic"] #try: # from nvidia.dali.plugin.pytorch import DALIClassificationIterator # from nvidia.dali.pipeline import Pipeline # import nvidia.dali.ops as ops # import nvidia.dali.types as types # # DATA_BACKEND_CHOICES.append("dali-gpu") # DATA_BACKEND_CHOICES.append("dali-cpu") #except ImportError: # print( # "Please install DALI from https://www.github.com/NVIDIA/DALI to run this example." # ) def load_jpeg_from_file(path, cuda=True): img_transforms = transforms.Compose( [transforms.Resize(256), transforms.CenterCrop(224), transforms.ToTensor()] ) img = img_transforms(Image.open(path)) with torch.no_grad(): # mean and std are not multiplied by 255 as they are in training script # torch dataloader reads data into bytes whereas loading directly # through PIL creates a tensor with floats in [0,1] range mean = torch.tensor([0.485, 0.456, 0.406]).view(1, 3, 1, 1) std = torch.tensor([0.229, 0.224, 0.225]).view(1, 3, 1, 1) if cuda: mean = mean.cuda() std = std.cuda() img = img.cuda() img = img.float() input = img.unsqueeze(0).sub_(mean).div_(std) return input #class HybridTrainPipe(Pipeline): # def __init__( # self, # batch_size, # num_threads, # device_id, # data_dir, # interpolation, # crop, # dali_cpu=False, # ): # super(HybridTrainPipe, self).__init__( # batch_size, num_threads, device_id, seed=12 + device_id # ) # interpolation = { # "bicubic": types.INTERP_CUBIC, # "bilinear": types.INTERP_LINEAR, # "triangular": types.INTERP_TRIANGULAR, # }[interpolation] # if torch.distributed.is_initialized(): # rank = torch.distributed.get_rank() # world_size = torch.distributed.get_world_size() # else: # rank = 0 # world_size = 1 # # self.input = ops.FileReader( # file_root=data_dir, # shard_id=rank, # num_shards=world_size, # random_shuffle=True, # pad_last_batch=True, # ) # # if dali_cpu: # dali_device = "cpu" # self.decode = ops.ImageDecoder(device=dali_device, output_type=types.RGB) # else: # dali_device = "gpu" # # This padding sets the size of the internal nvJPEG buffers to be able to handle all images from full-sized ImageNet # # without additional reallocations # self.decode = ops.ImageDecoder( # device="mixed", # output_type=types.RGB, # device_memory_padding=211025920, # host_memory_padding=140544512, # ) # # self.res = ops.RandomResizedCrop( # device=dali_device, # size=[crop, crop], # interp_type=interpolation, # random_aspect_ratio=[0.75, 4.0 / 3.0], # random_area=[0.08, 1.0], # num_attempts=100, # antialias=False, # ) # # self.cmnp = ops.CropMirrorNormalize( # device="gpu", # dtype=types.FLOAT, # output_layout=types.NCHW, # crop=(crop, crop), # mean=[0.485 * 255, 0.456 * 255, 0.406 * 255], # std=[0.229 * 255, 0.224 * 255, 0.225 * 255], # ) # self.coin = ops.CoinFlip(probability=0.5) # # def define_graph(self): # rng = self.coin() # self.jpegs, self.labels = self.input(name="Reader") # images = self.decode(self.jpegs) # images = self.res(images) # output = self.cmnp(images.gpu(), mirror=rng) # return [output, self.labels] #class HybridValPipe(Pipeline): # def __init__( # self, batch_size, num_threads, device_id, data_dir, interpolation, crop, size # ): # super(HybridValPipe, self).__init__( # batch_size, num_threads, device_id, seed=12 + device_id # ) # interpolation = { # "bicubic": types.INTERP_CUBIC, # "bilinear": types.INTERP_LINEAR, # "triangular": types.INTERP_TRIANGULAR, # }[interpolation] # if torch.distributed.is_initialized(): # rank = torch.distributed.get_rank() # world_size = torch.distributed.get_world_size() # else: # rank = 0 # world_size = 1 # # self.input = ops.FileReader( # file_root=data_dir, # shard_id=rank, # num_shards=world_size, # random_shuffle=False, # pad_last_batch=True, # ) # # self.decode = ops.ImageDecoder(device="mixed", output_type=types.RGB) # self.res = ops.Resize( # device="gpu", # resize_shorter=size, # interp_type=interpolation, # antialias=False, # ) # self.cmnp = ops.CropMirrorNormalize( # device="gpu", # dtype=types.FLOAT, # output_layout=types.NCHW, # crop=(crop, crop), # mean=[0.485 * 255, 0.456 * 255, 0.406 * 255], # std=[0.229 * 255, 0.224 * 255, 0.225 * 255], # ) # # def define_graph(self): # self.jpegs, self.labels = self.input(name="Reader") # images = self.decode(self.jpegs) # images = self.res(images) # output = self.cmnp(images) # return [output, self.labels] #class DALIWrapper(object): # def gen_wrapper(dalipipeline, num_classes, one_hot, memory_format): # for data in dalipipeline: # input = data[0]["data"].contiguous(memory_format=memory_format) # target = torch.reshape(data[0]["label"], [-1]).cuda().long() # if one_hot: # target = expand(num_classes, torch.float, target) # yield input, target # dalipipeline.reset() # # def __init__(self, dalipipeline, num_classes, one_hot, memory_format): # self.dalipipeline = dalipipeline # self.num_classes = num_classes # self.one_hot = one_hot # self.memory_format = memory_format # # def __iter__(self): # return DALIWrapper.gen_wrapper( # self.dalipipeline, self.num_classes, self.one_hot, self.memory_format # ) #def get_dali_train_loader(dali_cpu=False): # def gdtl( # data_path, # image_size, # batch_size, # num_classes, # one_hot, # interpolation="bilinear", # augmentation=None, # start_epoch=0, # workers=5, # _worker_init_fn=None, # memory_format=torch.contiguous_format, # **kwargs, # ): # if torch.distributed.is_initialized(): # rank = torch.distributed.get_rank() # world_size = torch.distributed.get_world_size() # else: # rank = 0 # world_size = 1 # # traindir = os.path.join(data_path, "train") # if augmentation is not None: # raise NotImplementedError( # f"Augmentation {augmentation} for dali loader is not supported" # ) # # pipe = HybridTrainPipe( # batch_size=batch_size, # num_threads=workers, # device_id=rank % torch.cuda.device_count(), # data_dir=traindir, # interpolation=interpolation, # crop=image_size, # dali_cpu=dali_cpu, # ) # # pipe.build() # train_loader = DALIClassificationIterator( # pipe, reader_name="Reader", fill_last_batch=False # ) # # return ( # DALIWrapper(train_loader, num_classes, one_hot, memory_format), # int(pipe.epoch_size("Reader") / (world_size * batch_size)), # ) # # return gdtl #def get_dali_val_loader(): # def gdvl( # data_path, # image_size, # batch_size, # num_classes, # one_hot, # interpolation="bilinear", # crop_padding=32, # workers=5, # _worker_init_fn=None, # memory_format=torch.contiguous_format, # **kwargs, # ): # if torch.distributed.is_initialized(): # rank = torch.distributed.get_rank() # world_size = torch.distributed.get_world_size() # else: # rank = 0 # world_size = 1 # # valdir = os.path.join(data_path, "val") # # pipe = HybridValPipe( # batch_size=batch_size, # num_threads=workers, # device_id=rank % torch.cuda.device_count(), # data_dir=valdir, # interpolation=interpolation, # crop=image_size, # size=image_size + crop_padding, # ) # # pipe.build() # val_loader = DALIClassificationIterator( # pipe, reader_name="Reader", fill_last_batch=False # ) # # return ( # DALIWrapper(val_loader, num_classes, one_hot, memory_format), # int(pipe.epoch_size("Reader") / (world_size * batch_size)), # ) # # return gdvl def fast_collate(memory_format, batch): imgs = [img[0] for img in batch] targets = torch.tensor([target[1] for target in batch], dtype=torch.int64) w = imgs[0].size[0] h = imgs[0].size[1] tensor = torch.zeros((len(imgs), 3, h, w), dtype=torch.uint8).contiguous( memory_format=memory_format ) for i, img in enumerate(imgs): nump_array = np.asarray(img, dtype=np.uint8) if nump_array.ndim < 3: nump_array = np.expand_dims(nump_array, axis=-1) nump_array = np.rollaxis(nump_array, 2) tensor[i] += torch.from_numpy(nump_array.copy()) return tensor, targets def expand(num_classes, dtype, tensor): e = torch.zeros( tensor.size(0), num_classes, dtype=dtype, device=torch.device("cuda") ) e = e.scatter(1, tensor.unsqueeze(1), 1.0) return e class PrefetchedWrapper(object): def prefetched_loader(loader, num_classes, one_hot): mean = ( torch.tensor([0.485 * 255, 0.456 * 255, 0.406 * 255]) .cuda() .view(1, 3, 1, 1) ) std = ( torch.tensor([0.229 * 255, 0.224 * 255, 0.225 * 255]) .cuda() .view(1, 3, 1, 1) ) stream = torch.cuda.Stream() first = True for next_input, next_target in loader: with torch.cuda.stream(stream): next_input = next_input.cuda(non_blocking=True) next_target = next_target.cuda(non_blocking=True) next_input = next_input.float() if one_hot: next_target = expand(num_classes, torch.float, next_target) next_input = next_input.sub_(mean).div_(std) if not first: yield input, target else: first = False torch.cuda.current_stream().wait_stream(stream) input = next_input target = next_target yield input, target def __init__(self, dataloader, start_epoch, num_classes, one_hot): self.dataloader = dataloader self.epoch = start_epoch self.one_hot = one_hot self.num_classes = num_classes def __iter__(self): if self.dataloader.sampler is not None and isinstance( self.dataloader.sampler, torch.utils.data.distributed.DistributedSampler ): self.dataloader.sampler.set_epoch(self.epoch) self.epoch += 1 return PrefetchedWrapper.prefetched_loader( self.dataloader, self.num_classes, self.one_hot ) def __len__(self): return len(self.dataloader) def get_pytorch_train_loader( data_path, image_size, batch_size, num_classes, one_hot, interpolation="bilinear", augmentation=None, start_epoch=0, workers=5, _worker_init_fn=None, prefetch_factor=2, memory_format=torch.contiguous_format, ): interpolation = { "bicubic": InterpolationMode.BICUBIC, "bilinear": InterpolationMode.BILINEAR, }[interpolation] traindir = os.path.join(data_path, "train") transforms_list = [ transforms.RandomResizedCrop(image_size, interpolation=interpolation), transforms.RandomHorizontalFlip(), ] if augmentation == "autoaugment": transforms_list.append(AutoaugmentImageNetPolicy()) train_dataset = datasets.ImageFolder(traindir, transforms.Compose(transforms_list)) if torch.distributed.is_initialized(): train_sampler = torch.utils.data.distributed.DistributedSampler( train_dataset, shuffle=True ) else: train_sampler = None train_loader = torch.utils.data.DataLoader( train_dataset, sampler=train_sampler, batch_size=batch_size, shuffle=(train_sampler is None), num_workers=workers, worker_init_fn=_worker_init_fn, pin_memory=True, collate_fn=partial(fast_collate, memory_format), drop_last=True, persistent_workers=True, prefetch_factor=prefetch_factor, ) return ( PrefetchedWrapper(train_loader, start_epoch, num_classes, one_hot), len(train_loader), ) def get_pytorch_val_loader( data_path, image_size, batch_size, num_classes, one_hot, interpolation="bilinear", workers=5, _worker_init_fn=None, crop_padding=32, memory_format=torch.contiguous_format, prefetch_factor=2, ): interpolation = { "bicubic": InterpolationMode.BICUBIC, "bilinear": InterpolationMode.BILINEAR, }[interpolation] valdir = os.path.join(data_path, "val") val_dataset = datasets.ImageFolder( valdir, transforms.Compose( [ transforms.Resize( image_size + crop_padding, interpolation=interpolation ), transforms.CenterCrop(image_size), ] ), ) if torch.distributed.is_initialized(): val_sampler = torch.utils.data.distributed.DistributedSampler( val_dataset, shuffle=False ) else: val_sampler = None val_loader = torch.utils.data.DataLoader( val_dataset, sampler=val_sampler, batch_size=batch_size, shuffle=(val_sampler is None), num_workers=workers, worker_init_fn=_worker_init_fn, pin_memory=True, collate_fn=partial(fast_collate, memory_format), drop_last=False, persistent_workers=True, prefetch_factor=prefetch_factor, ) return PrefetchedWrapper(val_loader, 0, num_classes, one_hot), len(val_loader) class SynteticDataLoader(object): def __init__( self, batch_size, num_classes, num_channels, height, width, one_hot, memory_format=torch.contiguous_format, ): input_data = ( torch.randn(batch_size, num_channels, height, width) .contiguous(memory_format=memory_format) .cuda() .normal_(0, 1.0) ) if one_hot: input_target = torch.empty(batch_size, num_classes).cuda() input_target[:, 0] = 1.0 else: input_target = torch.randint(0, num_classes, (batch_size,)) input_target = input_target.cuda() self.input_data = input_data self.input_target = input_target def __iter__(self): while True: yield self.input_data, self.input_target def get_synthetic_loader( data_path, image_size, batch_size, num_classes, one_hot, interpolation=None, augmentation=None, start_epoch=0, workers=None, _worker_init_fn=None, memory_format=torch.contiguous_format, **kwargs, ): return ( SynteticDataLoader( batch_size, num_classes, 3, image_size, image_size, one_hot, memory_format=memory_format, ), -1, )