# coding=utf-8 # Copyright 2019 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Script to pre-process SQUAD data into tfrecords.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import os import pickle import random from absl import app from absl import flags from absl import logging import tensorflow as tf import sentencepiece as spm from official.nlp.xlnet import squad_utils flags.DEFINE_integer( "num_proc", default=1, help="Number of preprocessing processes.") flags.DEFINE_integer("proc_id", default=0, help="Process id for preprocessing.") # I/O paths flags.DEFINE_string("output_dir", default="", help="Output dir for TF records.") flags.DEFINE_string( "spiece_model_file", default="", help="Sentence Piece model path.") flags.DEFINE_string("train_file", default="", help="Path of train file.") flags.DEFINE_string("predict_file", default="", help="Path of prediction file.") # Data preprocessing config flags.DEFINE_integer("max_seq_length", default=512, help="Max sequence length") flags.DEFINE_integer("max_query_length", default=64, help="Max query length") flags.DEFINE_integer("doc_stride", default=128, help="Doc stride") flags.DEFINE_bool("uncased", default=False, help="Use uncased data.") flags.DEFINE_bool( "create_train_data", default=True, help="Whether to create training data.") flags.DEFINE_bool( "create_eval_data", default=False, help="Whether to create eval data.") FLAGS = flags.FLAGS def _get_spm_basename(): spm_basename = os.path.basename(FLAGS.spiece_model_file) return spm_basename def preprocess(): """Preprocesses SQUAD data.""" sp_model = spm.SentencePieceProcessor() sp_model.Load(FLAGS.spiece_model_file) spm_basename = _get_spm_basename() if FLAGS.create_train_data: train_rec_file = os.path.join( FLAGS.output_dir, "{}.{}.slen-{}.qlen-{}.train.tf_record".format(spm_basename, FLAGS.proc_id, FLAGS.max_seq_length, FLAGS.max_query_length)) logging.info("Read examples from %s", FLAGS.train_file) train_examples = squad_utils.read_squad_examples( FLAGS.train_file, is_training=True) train_examples = train_examples[FLAGS.proc_id::FLAGS.num_proc] # Pre-shuffle the input to avoid having to make a very large shuffle # buffer in the `input_fn`. random.shuffle(train_examples) write_to_logging = "Write to " + train_rec_file logging.info(write_to_logging) train_writer = squad_utils.FeatureWriter( filename=train_rec_file, is_training=True) squad_utils.convert_examples_to_features( examples=train_examples, sp_model=sp_model, max_seq_length=FLAGS.max_seq_length, doc_stride=FLAGS.doc_stride, max_query_length=FLAGS.max_query_length, is_training=True, output_fn=train_writer.process_feature, uncased=FLAGS.uncased) train_writer.close() if FLAGS.create_eval_data: eval_examples = squad_utils.read_squad_examples( FLAGS.predict_file, is_training=False) eval_rec_file = os.path.join( FLAGS.output_dir, "{}.slen-{}.qlen-{}.eval.tf_record".format(spm_basename, FLAGS.max_seq_length, FLAGS.max_query_length)) eval_feature_file = os.path.join( FLAGS.output_dir, "{}.slen-{}.qlen-{}.eval.features.pkl".format(spm_basename, FLAGS.max_seq_length, FLAGS.max_query_length)) eval_writer = squad_utils.FeatureWriter( filename=eval_rec_file, is_training=False) eval_features = [] def append_feature(feature): eval_features.append(feature) eval_writer.process_feature(feature) squad_utils.convert_examples_to_features( examples=eval_examples, sp_model=sp_model, max_seq_length=FLAGS.max_seq_length, doc_stride=FLAGS.doc_stride, max_query_length=FLAGS.max_query_length, is_training=False, output_fn=append_feature, uncased=FLAGS.uncased) eval_writer.close() with tf.io.gfile.GFile(eval_feature_file, "wb") as fout: pickle.dump(eval_features, fout) def main(_): logging.set_verbosity(logging.INFO) if not tf.io.gfile.exists(FLAGS.output_dir): tf.io.gfile.mkdir(FLAGS.output_dir) preprocess() if __name__ == "__main__": app.run(main)