# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """A function to build a DetectionModel from configuration.""" from object_detection.builders import anchor_generator_builder from object_detection.builders import box_coder_builder from object_detection.builders import box_predictor_builder from object_detection.builders import hyperparams_builder from object_detection.builders import image_resizer_builder from object_detection.builders import losses_builder from object_detection.builders import matcher_builder from object_detection.builders import post_processing_builder from object_detection.builders import region_similarity_calculator_builder as sim_calc from object_detection.core import box_predictor from object_detection.meta_architectures import faster_rcnn_meta_arch from object_detection.meta_architectures import rfcn_meta_arch from object_detection.meta_architectures import ssd_meta_arch from object_detection.models import faster_rcnn_inception_resnet_v2_feature_extractor as frcnn_inc_res from object_detection.models import faster_rcnn_resnet_v1_feature_extractor as frcnn_resnet_v1 from object_detection.models.ssd_inception_v2_feature_extractor import SSDInceptionV2FeatureExtractor from object_detection.models.ssd_mobilenet_v1_feature_extractor import SSDMobileNetV1FeatureExtractor from object_detection.protos import model_pb2 # A map of names to SSD feature extractors. SSD_FEATURE_EXTRACTOR_CLASS_MAP = { 'ssd_inception_v2': SSDInceptionV2FeatureExtractor, 'ssd_mobilenet_v1': SSDMobileNetV1FeatureExtractor, } # A map of names to Faster R-CNN feature extractors. FASTER_RCNN_FEATURE_EXTRACTOR_CLASS_MAP = { 'faster_rcnn_resnet50': frcnn_resnet_v1.FasterRCNNResnet50FeatureExtractor, 'faster_rcnn_resnet101': frcnn_resnet_v1.FasterRCNNResnet101FeatureExtractor, 'faster_rcnn_resnet152': frcnn_resnet_v1.FasterRCNNResnet152FeatureExtractor, 'faster_rcnn_inception_resnet_v2': frcnn_inc_res.FasterRCNNInceptionResnetV2FeatureExtractor } def build(model_config, is_training): """Builds a DetectionModel based on the model config. Args: model_config: A model.proto object containing the config for the desired DetectionModel. is_training: True if this model is being built for training purposes. Returns: DetectionModel based on the config. Raises: ValueError: On invalid meta architecture or model. """ if not isinstance(model_config, model_pb2.DetectionModel): raise ValueError('model_config not of type model_pb2.DetectionModel.') meta_architecture = model_config.WhichOneof('model') if meta_architecture == 'ssd': return _build_ssd_model(model_config.ssd, is_training) if meta_architecture == 'faster_rcnn': return _build_faster_rcnn_model(model_config.faster_rcnn, is_training) raise ValueError('Unknown meta architecture: {}'.format(meta_architecture)) def _build_ssd_feature_extractor(feature_extractor_config, is_training, reuse_weights=None): """Builds a ssd_meta_arch.SSDFeatureExtractor based on config. Args: feature_extractor_config: A SSDFeatureExtractor proto config from ssd.proto. is_training: True if this feature extractor is being built for training. reuse_weights: if the feature extractor should reuse weights. Returns: ssd_meta_arch.SSDFeatureExtractor based on config. Raises: ValueError: On invalid feature extractor type. """ feature_type = feature_extractor_config.type depth_multiplier = feature_extractor_config.depth_multiplier min_depth = feature_extractor_config.min_depth conv_hyperparams = hyperparams_builder.build( feature_extractor_config.conv_hyperparams, is_training) if feature_type not in SSD_FEATURE_EXTRACTOR_CLASS_MAP: raise ValueError('Unknown ssd feature_extractor: {}'.format(feature_type)) feature_extractor_class = SSD_FEATURE_EXTRACTOR_CLASS_MAP[feature_type] return feature_extractor_class(depth_multiplier, min_depth, conv_hyperparams, reuse_weights) def _build_ssd_model(ssd_config, is_training): """Builds an SSD detection model based on the model config. Args: ssd_config: A ssd.proto object containing the config for the desired SSDMetaArch. is_training: True if this model is being built for training purposes. Returns: SSDMetaArch based on the config. Raises: ValueError: If ssd_config.type is not recognized (i.e. not registered in model_class_map). """ num_classes = ssd_config.num_classes # Feature extractor feature_extractor = _build_ssd_feature_extractor(ssd_config.feature_extractor, is_training) box_coder = box_coder_builder.build(ssd_config.box_coder) matcher = matcher_builder.build(ssd_config.matcher) region_similarity_calculator = sim_calc.build( ssd_config.similarity_calculator) ssd_box_predictor = box_predictor_builder.build(hyperparams_builder.build, ssd_config.box_predictor, is_training, num_classes) anchor_generator = anchor_generator_builder.build( ssd_config.anchor_generator) image_resizer_fn = image_resizer_builder.build(ssd_config.image_resizer) non_max_suppression_fn, score_conversion_fn = post_processing_builder.build( ssd_config.post_processing) (classification_loss, localization_loss, classification_weight, localization_weight, hard_example_miner) = losses_builder.build(ssd_config.loss) normalize_loss_by_num_matches = ssd_config.normalize_loss_by_num_matches return ssd_meta_arch.SSDMetaArch( is_training, anchor_generator, ssd_box_predictor, box_coder, feature_extractor, matcher, region_similarity_calculator, image_resizer_fn, non_max_suppression_fn, score_conversion_fn, classification_loss, localization_loss, classification_weight, localization_weight, normalize_loss_by_num_matches, hard_example_miner) def _build_faster_rcnn_feature_extractor( feature_extractor_config, is_training, reuse_weights=None): """Builds a faster_rcnn_meta_arch.FasterRCNNFeatureExtractor based on config. Args: feature_extractor_config: A FasterRcnnFeatureExtractor proto config from faster_rcnn.proto. is_training: True if this feature extractor is being built for training. reuse_weights: if the feature extractor should reuse weights. Returns: faster_rcnn_meta_arch.FasterRCNNFeatureExtractor based on config. Raises: ValueError: On invalid feature extractor type. """ feature_type = feature_extractor_config.type first_stage_features_stride = ( feature_extractor_config.first_stage_features_stride) if feature_type not in FASTER_RCNN_FEATURE_EXTRACTOR_CLASS_MAP: raise ValueError('Unknown Faster R-CNN feature_extractor: {}'.format( feature_type)) feature_extractor_class = FASTER_RCNN_FEATURE_EXTRACTOR_CLASS_MAP[ feature_type] return feature_extractor_class( is_training, first_stage_features_stride, reuse_weights) def _build_faster_rcnn_model(frcnn_config, is_training): """Builds a Faster R-CNN or R-FCN detection model based on the model config. Builds R-FCN model if the second_stage_box_predictor in the config is of type `rfcn_box_predictor` else builds a Faster R-CNN model. Args: frcnn_config: A faster_rcnn.proto object containing the config for the desired FasterRCNNMetaArch or RFCNMetaArch. is_training: True if this model is being built for training purposes. Returns: FasterRCNNMetaArch based on the config. Raises: ValueError: If frcnn_config.type is not recognized (i.e. not registered in model_class_map). """ num_classes = frcnn_config.num_classes image_resizer_fn = image_resizer_builder.build(frcnn_config.image_resizer) feature_extractor = _build_faster_rcnn_feature_extractor( frcnn_config.feature_extractor, is_training) first_stage_only = frcnn_config.first_stage_only first_stage_anchor_generator = anchor_generator_builder.build( frcnn_config.first_stage_anchor_generator) first_stage_atrous_rate = frcnn_config.first_stage_atrous_rate first_stage_box_predictor_arg_scope = hyperparams_builder.build( frcnn_config.first_stage_box_predictor_conv_hyperparams, is_training) first_stage_box_predictor_kernel_size = ( frcnn_config.first_stage_box_predictor_kernel_size) first_stage_box_predictor_depth = frcnn_config.first_stage_box_predictor_depth first_stage_minibatch_size = frcnn_config.first_stage_minibatch_size first_stage_positive_balance_fraction = ( frcnn_config.first_stage_positive_balance_fraction) first_stage_nms_score_threshold = frcnn_config.first_stage_nms_score_threshold first_stage_nms_iou_threshold = frcnn_config.first_stage_nms_iou_threshold first_stage_max_proposals = frcnn_config.first_stage_max_proposals first_stage_loc_loss_weight = ( frcnn_config.first_stage_localization_loss_weight) first_stage_obj_loss_weight = frcnn_config.first_stage_objectness_loss_weight initial_crop_size = frcnn_config.initial_crop_size maxpool_kernel_size = frcnn_config.maxpool_kernel_size maxpool_stride = frcnn_config.maxpool_stride second_stage_box_predictor = box_predictor_builder.build( hyperparams_builder.build, frcnn_config.second_stage_box_predictor, is_training=is_training, num_classes=num_classes) second_stage_batch_size = frcnn_config.second_stage_batch_size second_stage_balance_fraction = frcnn_config.second_stage_balance_fraction (second_stage_non_max_suppression_fn, second_stage_score_conversion_fn ) = post_processing_builder.build(frcnn_config.second_stage_post_processing) second_stage_localization_loss_weight = ( frcnn_config.second_stage_localization_loss_weight) second_stage_classification_loss_weight = ( frcnn_config.second_stage_classification_loss_weight) hard_example_miner = None if frcnn_config.HasField('hard_example_miner'): hard_example_miner = losses_builder.build_hard_example_miner( frcnn_config.hard_example_miner, second_stage_classification_loss_weight, second_stage_localization_loss_weight) common_kwargs = { 'is_training': is_training, 'num_classes': num_classes, 'image_resizer_fn': image_resizer_fn, 'feature_extractor': feature_extractor, 'first_stage_only': first_stage_only, 'first_stage_anchor_generator': first_stage_anchor_generator, 'first_stage_atrous_rate': first_stage_atrous_rate, 'first_stage_box_predictor_arg_scope': first_stage_box_predictor_arg_scope, 'first_stage_box_predictor_kernel_size': first_stage_box_predictor_kernel_size, 'first_stage_box_predictor_depth': first_stage_box_predictor_depth, 'first_stage_minibatch_size': first_stage_minibatch_size, 'first_stage_positive_balance_fraction': first_stage_positive_balance_fraction, 'first_stage_nms_score_threshold': first_stage_nms_score_threshold, 'first_stage_nms_iou_threshold': first_stage_nms_iou_threshold, 'first_stage_max_proposals': first_stage_max_proposals, 'first_stage_localization_loss_weight': first_stage_loc_loss_weight, 'first_stage_objectness_loss_weight': first_stage_obj_loss_weight, 'second_stage_batch_size': second_stage_batch_size, 'second_stage_balance_fraction': second_stage_balance_fraction, 'second_stage_non_max_suppression_fn': second_stage_non_max_suppression_fn, 'second_stage_score_conversion_fn': second_stage_score_conversion_fn, 'second_stage_localization_loss_weight': second_stage_localization_loss_weight, 'second_stage_classification_loss_weight': second_stage_classification_loss_weight, 'hard_example_miner': hard_example_miner} if isinstance(second_stage_box_predictor, box_predictor.RfcnBoxPredictor): return rfcn_meta_arch.RFCNMetaArch( second_stage_rfcn_box_predictor=second_stage_box_predictor, **common_kwargs) else: return faster_rcnn_meta_arch.FasterRCNNMetaArch( initial_crop_size=initial_crop_size, maxpool_kernel_size=maxpool_kernel_size, maxpool_stride=maxpool_stride, second_stage_mask_rcnn_box_predictor=second_stage_box_predictor, **common_kwargs)