# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for losses_builder.""" import tensorflow as tf from google.protobuf import text_format from object_detection.builders import losses_builder from object_detection.core import losses from object_detection.protos import losses_pb2 class LocalizationLossBuilderTest(tf.test.TestCase): def test_build_weighted_l2_localization_loss(self): losses_text_proto = """ localization_loss { weighted_l2 { } } classification_loss { weighted_softmax { } } """ losses_proto = losses_pb2.Loss() text_format.Merge(losses_text_proto, losses_proto) _, localization_loss, _, _, _ = losses_builder.build(losses_proto) self.assertTrue(isinstance(localization_loss, losses.WeightedL2LocalizationLoss)) def test_build_weighted_smooth_l1_localization_loss(self): losses_text_proto = """ localization_loss { weighted_smooth_l1 { } } classification_loss { weighted_softmax { } } """ losses_proto = losses_pb2.Loss() text_format.Merge(losses_text_proto, losses_proto) _, localization_loss, _, _, _ = losses_builder.build(losses_proto) self.assertTrue(isinstance(localization_loss, losses.WeightedSmoothL1LocalizationLoss)) def test_build_weighted_iou_localization_loss(self): losses_text_proto = """ localization_loss { weighted_iou { } } classification_loss { weighted_softmax { } } """ losses_proto = losses_pb2.Loss() text_format.Merge(losses_text_proto, losses_proto) _, localization_loss, _, _, _ = losses_builder.build(losses_proto) self.assertTrue(isinstance(localization_loss, losses.WeightedIOULocalizationLoss)) def test_anchorwise_output(self): losses_text_proto = """ localization_loss { weighted_smooth_l1 { anchorwise_output: true } } classification_loss { weighted_softmax { } } """ losses_proto = losses_pb2.Loss() text_format.Merge(losses_text_proto, losses_proto) _, localization_loss, _, _, _ = losses_builder.build(losses_proto) self.assertTrue(isinstance(localization_loss, losses.WeightedSmoothL1LocalizationLoss)) predictions = tf.constant([[[0.0, 0.0, 1.0, 1.0], [0.0, 0.0, 1.0, 1.0]]]) targets = tf.constant([[[0.0, 0.0, 1.0, 1.0], [0.0, 0.0, 1.0, 1.0]]]) weights = tf.constant([[1.0, 1.0]]) loss = localization_loss(predictions, targets, weights=weights) self.assertEqual(loss.shape, [1, 2]) def test_raise_error_on_empty_localization_config(self): losses_text_proto = """ classification_loss { weighted_softmax { } } """ losses_proto = losses_pb2.Loss() text_format.Merge(losses_text_proto, losses_proto) with self.assertRaises(ValueError): losses_builder._build_localization_loss(losses_proto) class ClassificationLossBuilderTest(tf.test.TestCase): def test_build_weighted_sigmoid_classification_loss(self): losses_text_proto = """ classification_loss { weighted_sigmoid { } } localization_loss { weighted_l2 { } } """ losses_proto = losses_pb2.Loss() text_format.Merge(losses_text_proto, losses_proto) classification_loss, _, _, _, _ = losses_builder.build(losses_proto) self.assertTrue(isinstance(classification_loss, losses.WeightedSigmoidClassificationLoss)) def test_build_weighted_softmax_classification_loss(self): losses_text_proto = """ classification_loss { weighted_softmax { } } localization_loss { weighted_l2 { } } """ losses_proto = losses_pb2.Loss() text_format.Merge(losses_text_proto, losses_proto) classification_loss, _, _, _, _ = losses_builder.build(losses_proto) self.assertTrue(isinstance(classification_loss, losses.WeightedSoftmaxClassificationLoss)) def test_build_bootstrapped_sigmoid_classification_loss(self): losses_text_proto = """ classification_loss { bootstrapped_sigmoid { alpha: 0.5 } } localization_loss { weighted_l2 { } } """ losses_proto = losses_pb2.Loss() text_format.Merge(losses_text_proto, losses_proto) classification_loss, _, _, _, _ = losses_builder.build(losses_proto) self.assertTrue(isinstance(classification_loss, losses.BootstrappedSigmoidClassificationLoss)) def test_anchorwise_output(self): losses_text_proto = """ classification_loss { weighted_sigmoid { anchorwise_output: true } } localization_loss { weighted_l2 { } } """ losses_proto = losses_pb2.Loss() text_format.Merge(losses_text_proto, losses_proto) classification_loss, _, _, _, _ = losses_builder.build(losses_proto) self.assertTrue(isinstance(classification_loss, losses.WeightedSigmoidClassificationLoss)) predictions = tf.constant([[[0.0, 1.0, 0.0], [0.0, 0.5, 0.5]]]) targets = tf.constant([[[0.0, 1.0, 0.0], [0.0, 0.0, 1.0]]]) weights = tf.constant([[1.0, 1.0]]) loss = classification_loss(predictions, targets, weights=weights) self.assertEqual(loss.shape, [1, 2]) def test_raise_error_on_empty_config(self): losses_text_proto = """ localization_loss { weighted_l2 { } } """ losses_proto = losses_pb2.Loss() text_format.Merge(losses_text_proto, losses_proto) with self.assertRaises(ValueError): losses_builder.build(losses_proto) class HardExampleMinerBuilderTest(tf.test.TestCase): def test_do_not_build_hard_example_miner_by_default(self): losses_text_proto = """ localization_loss { weighted_l2 { } } classification_loss { weighted_softmax { } } """ losses_proto = losses_pb2.Loss() text_format.Merge(losses_text_proto, losses_proto) _, _, _, _, hard_example_miner = losses_builder.build(losses_proto) self.assertEqual(hard_example_miner, None) def test_build_hard_example_miner_for_classification_loss(self): losses_text_proto = """ localization_loss { weighted_l2 { } } classification_loss { weighted_softmax { } } hard_example_miner { loss_type: CLASSIFICATION } """ losses_proto = losses_pb2.Loss() text_format.Merge(losses_text_proto, losses_proto) _, _, _, _, hard_example_miner = losses_builder.build(losses_proto) self.assertTrue(isinstance(hard_example_miner, losses.HardExampleMiner)) self.assertEqual(hard_example_miner._loss_type, 'cls') def test_build_hard_example_miner_for_localization_loss(self): losses_text_proto = """ localization_loss { weighted_l2 { } } classification_loss { weighted_softmax { } } hard_example_miner { loss_type: LOCALIZATION } """ losses_proto = losses_pb2.Loss() text_format.Merge(losses_text_proto, losses_proto) _, _, _, _, hard_example_miner = losses_builder.build(losses_proto) self.assertTrue(isinstance(hard_example_miner, losses.HardExampleMiner)) self.assertEqual(hard_example_miner._loss_type, 'loc') def test_build_hard_example_miner_with_non_default_values(self): losses_text_proto = """ localization_loss { weighted_l2 { } } classification_loss { weighted_softmax { } } hard_example_miner { num_hard_examples: 32 iou_threshold: 0.5 loss_type: LOCALIZATION max_negatives_per_positive: 10 min_negatives_per_image: 3 } """ losses_proto = losses_pb2.Loss() text_format.Merge(losses_text_proto, losses_proto) _, _, _, _, hard_example_miner = losses_builder.build(losses_proto) self.assertTrue(isinstance(hard_example_miner, losses.HardExampleMiner)) self.assertEqual(hard_example_miner._num_hard_examples, 32) self.assertAlmostEqual(hard_example_miner._iou_threshold, 0.5) self.assertEqual(hard_example_miner._max_negatives_per_positive, 10) self.assertEqual(hard_example_miner._min_negatives_per_image, 3) class LossBuilderTest(tf.test.TestCase): def test_build_all_loss_parameters(self): losses_text_proto = """ localization_loss { weighted_l2 { } } classification_loss { weighted_softmax { } } hard_example_miner { } classification_weight: 0.8 localization_weight: 0.2 """ losses_proto = losses_pb2.Loss() text_format.Merge(losses_text_proto, losses_proto) (classification_loss, localization_loss, classification_weight, localization_weight, hard_example_miner) = losses_builder.build(losses_proto) self.assertTrue(isinstance(hard_example_miner, losses.HardExampleMiner)) self.assertTrue(isinstance(classification_loss, losses.WeightedSoftmaxClassificationLoss)) self.assertTrue(isinstance(localization_loss, losses.WeightedL2LocalizationLoss)) self.assertAlmostEqual(classification_weight, 0.8) self.assertAlmostEqual(localization_weight, 0.2) if __name__ == '__main__': tf.test.main()