runtime: distribution_strategy: 'mirrored' mixed_precision_dtype: 'float16' loss_scale: 'dynamic' num_gpus: 2 task: annotation_file: Null init_checkpoint: Null model: num_classes: 80 input_size: [640, 640, 3] min_level: 3 max_level: 7 losses: l2_weight_decay: 0.0001 train_data: input_path: Null tfds_name: 'coco/2017' tfds_split: 'train' tfds_download: True is_training: True global_batch_size: 16 dtype: 'float16' cycle_length: 5 decoder: type: tfds_decoder shuffle_buffer_size: 2 validation_data: input_path: Null tfds_name: 'coco/2017' tfds_split: 'validation' tfds_download: True # tfds_skip_decoding_feature: source_id,image,height,width,groundtruth_classes,groundtruth_is_crowd,groundtruth_area,groundtruth_boxes is_training: False global_batch_size: 16 dtype: 'float16' cycle_length: 10 decoder: type: tfds_decoder shuffle_buffer_size: 2 trainer: train_steps: 532224 validation_steps: 1564 validation_interval: 2000 steps_per_loop: 200 #59136 summary_interval: 200 #59136 checkpoint_interval: 10000 optimizer_config: optimizer: type: 'sgd' sgd: momentum: 0.9 # learning_rate: # type: 'cosine' # cosine: # initial_learning_rate: 0.0021875 # decay_steps: 4257792 # alpha: 0.01 # Stepwise version learning_rate: type: 'stepwise' stepwise: # boundaries: [26334, 30954] boundaries: [421344, 495264] # values: [0.28, 0.028, 0.0028] values: [0.0175, 0.00175, 0.000175] warmup: type: 'linear' linear: warmup_steps: 20480 warmup_learning_rate: 0.0001634375