# Training with Pruning [TOC] ⚠️ Disclaimer: All datasets hyperlinked from this page are not owned or distributed by Google. The dataset is made available by third parties. Please review the terms and conditions made available by the third parties before using the data. ## Overview This project includes pruning codes for TensorFlow models. These are examples to show how to apply the Model Optimization Toolkit's [pruning API](https://www.tensorflow.org/model_optimization/guide/pruning). ## How to train a model ```bash EXPERIMENT=xxx # Change this for your run, for example, 'resnet_imagenet_pruning' CONFIG_FILE=xxx # Change this for your run, for example, path of imagenet_resnet50_pruning_gpu.yaml MODEL_DIR=xxx # Change this for your run, for example, /tmp/model_dir python3 train.py \ --experiment=${EXPERIMENT} \ --config_file=${CONFIG_FILE} \ --model_dir=${MODEL_DIR} \ --mode=train_and_eval ``` ## Accuracy
Comparison of Imagenet top-1 accuracy for the classification models
Note: The Top-1 model accuracy is measured on the validation set of [ImageNet](https://www.image-net.org/). ## Pre-trained Models ### Image Classification Model |Resolution|Top-1 Accuracy (Dense)|Top-1 Accuracy (50% sparsity)|Top-1 Accuracy (80% sparsity)|Config |Download ----------------------|----------|---------------------|-------------------------|-------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------| |MobileNetV2 |224x224 |72.768% |71.334% |61.378% |[config](https://github.com/tensorflow/models/blob/master/official/projects/pruning/configs/experiments/image_classification/imagenet_mobilenetv2_pruning_gpu.yaml) |[TFLite(50% sparsity)](https://storage.googleapis.com/tf_model_garden/vision/mobilenet/v2_1.0_float/mobilenet_v2_0.5_pruned_1.00_224_float.tflite), | |ResNet50 |224x224 |76.704% |76.61% |75.508% |[config](https://github.com/tensorflow/models/blob/master/official/projects/pruning/configs/experiments/image_classification/imagenet_resnet50_pruning_gpu.yaml) |[TFLite(80% sparsity)](https://storage.googleapis.com/tf_model_garden/vision/resnet50_imagenet/resnet_50_0.8_pruned_224_float.tflite) |