# Copyright 2019 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Executes BERT benchmarks and accuracy tests.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import json import math import os import time # pylint: disable=g-bad-import-order import numpy as np from absl import flags from absl.testing import flagsaver import tensorflow as tf # pylint: enable=g-bad-import-order from official.bert import modeling from official.bert import run_classifier from official.utils.misc import distribution_utils # pylint: disable=line-too-long PRETRAINED_CHECKPOINT_PATH = 'gs://cloud-tpu-checkpoints/bert/tf_20/uncased_L-24_H-1024_A-16/bert_model.ckpt' CLASSIFIER_TRAIN_DATA_PATH = 'gs://tf-perfzero-data/bert/classification/mrpc_train.tf_record' CLASSIFIER_EVAL_DATA_PATH = 'gs://tf-perfzero-data/bert/classification/mrpc_eval.tf_record' CLASSIFIER_INPUT_META_DATA_PATH = 'gs://tf-perfzero-data/bert/classification/mrpc_meta_data' MODEL_CONFIG_FILE_PATH = 'gs://cloud-tpu-checkpoints/bert/tf_20/uncased_L-24_H-1024_A-16/bert_config' # pylint: enable=line-too-long FLAGS = flags.FLAGS class BenchmarkTimerCallback(tf.keras.callbacks.Callback): """Callback that records time it takes to run each batch.""" def __init__(self, num_batches_to_skip=10): super(BenchmarkTimerCallback, self).__init__() self.num_batches_to_skip = num_batches_to_skip self.timer_records = [] self.start_time = None def on_batch_start(self, batch, logs=None): if batch < self.num_batches_to_skip: return self.start_time = time.time() def on_batch_end(self, batch, logs=None): if batch < self.num_batches_to_skip: return assert self.start_time self.timer_records.append(time.time() - self.start_time) def get_examples_per_sec(self, batch_size): return batch_size / np.mean(self.timer_records) class BertBenchmarkBase(tf.test.Benchmark): """Base class to hold methods common to test classes in the module.""" local_flags = None def __init__(self, output_dir=None): self.num_gpus = 8 self.num_epochs = None self.num_steps_per_epoch = None if not output_dir: output_dir = '/tmp' self.output_dir = output_dir self.timer_callback = None def _get_model_dir(self, folder_name): """Returns directory to store info, e.g. saved model and event log.""" return os.path.join(self.output_dir, folder_name) def _setup(self): """Sets up and resets flags before each test.""" tf.compat.v1.logging.set_verbosity(tf.compat.v1.logging.DEBUG) self.timer_callback = BenchmarkTimerCallback() if BertBenchmarkBase.local_flags is None: # Loads flags to get defaults to then override. List cannot be empty. flags.FLAGS(['foo']) saved_flag_values = flagsaver.save_flag_values() BertBenchmarkBase.local_flags = saved_flag_values else: flagsaver.restore_flag_values(BertBenchmarkBase.local_flags) def _report_benchmark(self, stats, wall_time_sec, min_accuracy, max_accuracy): """Report benchmark results by writing to local protobuf file. Args: stats: dict returned from BERT models with known entries. wall_time_sec: the during of the benchmark execution in seconds min_accuracy: Minimum classification accuracy constraint to verify correctness of the model. max_accuracy: Maximum classification accuracy constraint to verify correctness of the model. """ metrics = [{ 'name': 'training_loss', 'value': stats['train_loss'], }, { 'name': 'exp_per_second', 'value': self.timer_callback.get_examples_per_sec(FLAGS.train_batch_size) }] if 'eval_metrics' in stats: metrics.append({ 'name': 'eval_accuracy', 'value': stats['eval_metrics'], 'min_value': min_accuracy, 'max_value': max_accuracy, }) self.report_benchmark( iters=stats['total_training_steps'], wall_time=wall_time_sec, metrics=metrics) @flagsaver.flagsaver def _run_bert_classifier(self, callbacks=None): """Starts BERT classification task.""" with tf.io.gfile.GFile(FLAGS.input_meta_data_path, 'rb') as reader: input_meta_data = json.loads(reader.read().decode('utf-8')) bert_config = modeling.BertConfig.from_json_file(FLAGS.bert_config_file) epochs = self.num_epochs if self.num_epochs else FLAGS.num_train_epochs if self.num_steps_per_epoch: steps_per_epoch = self.num_steps_per_epoch else: train_data_size = input_meta_data['train_data_size'] steps_per_epoch = int(train_data_size / FLAGS.train_batch_size) warmup_steps = int(epochs * steps_per_epoch * 0.1) eval_steps = int( math.ceil(input_meta_data['eval_data_size'] / FLAGS.eval_batch_size)) strategy = distribution_utils.get_distribution_strategy( distribution_strategy='mirrored', num_gpus=self.num_gpus) run_classifier.run_customized_training( strategy, bert_config, input_meta_data, FLAGS.model_dir, epochs, steps_per_epoch, eval_steps, warmup_steps, FLAGS.learning_rate, FLAGS.init_checkpoint, custom_callbacks=callbacks) class BertClassifyBenchmark(BertBenchmarkBase): """Short benchmark performance tests for BERT model. Tests BERT classification performance in different GPU configurations. The naming convention of below test cases follow `benchmark_(number of gpus)_gpu_(dataset type)` format. """ def __init__(self, output_dir=None, **kwargs): self.train_data_path = CLASSIFIER_TRAIN_DATA_PATH self.eval_data_path = CLASSIFIER_EVAL_DATA_PATH self.bert_config_file = MODEL_CONFIG_FILE_PATH self.input_meta_data_path = CLASSIFIER_INPUT_META_DATA_PATH # Since we only care about performance metrics, we limit # the number of training steps and epochs to prevent unnecessarily # long tests. self.num_steps_per_epoch = 110 self.num_epochs = 1 super(BertClassifyBenchmark, self).__init__(output_dir=output_dir) def _run_and_report_benchmark(self, training_summary_path, min_accuracy=0, max_accuracy=1): """Starts BERT performance benchmark test.""" start_time_sec = time.time() self._run_bert_classifier(callbacks=[self.timer_callback]) wall_time_sec = time.time() - start_time_sec with tf.io.gfile.GFile(training_summary_path, 'rb') as reader: summary = json.loads(reader.read().decode('utf-8')) # Since we do not load from any pretrained checkpoints, we ignore all # accuracy metrics. summary.pop('eval_metrics', None) super(BertClassifyBenchmark, self)._report_benchmark( stats=summary, wall_time_sec=wall_time_sec, min_accuracy=min_accuracy, max_accuracy=max_accuracy) def benchmark_1_gpu_mrpc(self): """Test BERT model performance with 1 GPU.""" self._setup() self.num_gpus = 1 FLAGS.model_dir = self._get_model_dir('benchmark_1_gpu_mrpc') FLAGS.train_data_path = self.train_data_path FLAGS.eval_data_path = self.eval_data_path FLAGS.input_meta_data_path = self.input_meta_data_path FLAGS.bert_config_file = self.bert_config_file FLAGS.train_batch_size = 4 FLAGS.eval_batch_size = 4 summary_path = os.path.join(FLAGS.model_dir, 'training_summary.txt') self._run_and_report_benchmark(summary_path) def benchmark_2_gpu_mprc(self): """Test BERT model performance with 2 GPUs.""" self._setup() self.num_gpus = 2 FLAGS.model_dir = self._get_model_dir('benchmark_2_gpu_mprc') FLAGS.train_data_path = self.train_data_path FLAGS.eval_data_path = self.eval_data_path FLAGS.input_meta_data_path = self.input_meta_data_path FLAGS.bert_config_file = self.bert_config_file FLAGS.train_batch_size = 8 FLAGS.eval_batch_size = 8 summary_path = os.path.join(FLAGS.model_dir, 'training_summary.txt') self._run_and_report_benchmark(summary_path) def benchmark_4_gpu_mrpc(self): """Test BERT model performance with 4 GPUs.""" self._setup() self.num_gpus = 4 FLAGS.model_dir = self._get_model_dir('benchmark_4_gpu_mrpc') FLAGS.train_data_path = self.train_data_path FLAGS.eval_data_path = self.eval_data_path FLAGS.input_meta_data_path = self.input_meta_data_path FLAGS.bert_config_file = self.bert_config_file FLAGS.train_batch_size = 16 summary_path = os.path.join(FLAGS.model_dir, 'training_summary.txt') self._run_and_report_benchmark(summary_path) def benchmark_8_gpu_mrpc(self): """Test BERT model performance with 8 GPUs.""" self._setup() FLAGS.model_dir = self._get_model_dir('benchmark_8_gpu_mrpc') FLAGS.train_data_path = self.train_data_path FLAGS.eval_data_path = self.eval_data_path FLAGS.input_meta_data_path = self.input_meta_data_path FLAGS.bert_config_file = self.bert_config_file summary_path = os.path.join(FLAGS.model_dir, 'training_summary.txt') self._run_and_report_benchmark(summary_path) class BertClassifyAccuracy(BertBenchmarkBase): """Short accuracy test for BERT model. Tests BERT classification task model accuracy. The naming convention of below test cases follow `benchmark_(number of gpus)_gpu_(dataset type)` format. """ def __init__(self, output_dir=None, **kwargs): self.train_data_path = CLASSIFIER_TRAIN_DATA_PATH self.eval_data_path = CLASSIFIER_EVAL_DATA_PATH self.bert_config_file = MODEL_CONFIG_FILE_PATH self.input_meta_data_path = CLASSIFIER_INPUT_META_DATA_PATH self.pretrained_checkpoint_path = PRETRAINED_CHECKPOINT_PATH super(BertClassifyAccuracy, self).__init__(output_dir=output_dir) def _run_and_report_benchmark(self, training_summary_path, min_accuracy=0.84, max_accuracy=0.88): """Starts BERT accuracy benchmark test.""" start_time_sec = time.time() self._run_bert_classifier(callbacks=[self.timer_callback]) wall_time_sec = time.time() - start_time_sec with tf.io.gfile.GFile(training_summary_path, 'rb') as reader: summary = json.loads(reader.read().decode('utf-8')) super(BertClassifyAccuracy, self)._report_benchmark( stats=summary, wall_time_sec=wall_time_sec, min_accuracy=min_accuracy, max_accuracy=max_accuracy) def benchmark_8_gpu_mrpc(self): """Run BERT model accuracy test with 8 GPUs. Due to comparatively small cardinality of MRPC dataset, training accuracy metric has high variance between trainings. As so, we set the wide range of allowed accuracy (84% to 88%). """ self._setup() FLAGS.model_dir = self._get_model_dir('benchmark_8_gpu_mrpc') FLAGS.train_data_path = self.train_data_path FLAGS.eval_data_path = self.eval_data_path FLAGS.input_meta_data_path = self.input_meta_data_path FLAGS.bert_config_file = self.bert_config_file FLAGS.init_checkpoint = self.pretrained_checkpoint_path summary_path = os.path.join(FLAGS.model_dir, 'training_summary.txt') self._run_and_report_benchmark(summary_path) if __name__ == '__main__': tf.test.main()