# Description: # Contains files for loading, training and evaluating TF-Slim-based models. package( default_visibility = ["//visibility:public"], ) licenses(["notice"]) # Apache 2.0 exports_files(["LICENSE"]) py_library( name = "dataset_utils", srcs = ["datasets/dataset_utils.py"], deps = [ # "//tensorflow", ], ) sh_binary( name = "download_and_convert_imagenet", srcs = ["datasets/download_and_convert_imagenet.sh"], data = [ "datasets/download_imagenet.sh", "datasets/imagenet_2012_validation_synset_labels.txt", "datasets/imagenet_lsvrc_2015_synsets.txt", "datasets/imagenet_metadata.txt", "datasets/preprocess_imagenet_validation_data.py", "datasets/process_bounding_boxes.py", ":build_imagenet_data", ], ) py_binary( name = "build_imagenet_data", srcs = ["datasets/build_imagenet_data.py"], deps = [ # "//numpy", # "//tensorflow", ], ) py_library( name = "download_and_convert_cifar10", srcs = ["datasets/download_and_convert_cifar10.py"], deps = [ ":dataset_utils", # "//numpy", # "//tensorflow", ], ) py_library( name = "download_and_convert_flowers", srcs = ["datasets/download_and_convert_flowers.py"], deps = [ ":dataset_utils", # "//tensorflow", ], ) py_library( name = "download_and_convert_mnist", srcs = ["datasets/download_and_convert_mnist.py"], deps = [ ":dataset_utils", # "//numpy", # "//tensorflow", ], ) py_binary( name = "download_and_convert_data", srcs = ["download_and_convert_data.py"], deps = [ ":download_and_convert_cifar10", ":download_and_convert_flowers", ":download_and_convert_mnist", # "//tensorflow", ], ) py_library( name = "cifar10", srcs = ["datasets/cifar10.py"], deps = [ ":dataset_utils", # "//tensorflow", ], ) py_library( name = "flowers", srcs = ["datasets/flowers.py"], deps = [ ":dataset_utils", # "//tensorflow", ], ) py_library( name = "imagenet", srcs = ["datasets/imagenet.py"], deps = [ ":dataset_utils", # "//tensorflow", ], ) py_library( name = "mnist", srcs = ["datasets/mnist.py"], deps = [ ":dataset_utils", # "//tensorflow", ], ) py_library( name = "dataset_factory", srcs = ["datasets/dataset_factory.py"], deps = [ ":cifar10", ":flowers", ":imagenet", ":mnist", ], ) py_library( name = "model_deploy", srcs = ["deployment/model_deploy.py"], deps = [ # "//tensorflow", ], ) py_test( name = "model_deploy_test", srcs = ["deployment/model_deploy_test.py"], srcs_version = "PY2AND3", deps = [ ":model_deploy", # "//numpy", # "//tensorflow", ], ) py_library( name = "cifarnet_preprocessing", srcs = ["preprocessing/cifarnet_preprocessing.py"], deps = [ # "//tensorflow", ], ) py_library( name = "inception_preprocessing", srcs = ["preprocessing/inception_preprocessing.py"], deps = [ # "//tensorflow", # "//tensorflow/python:control_flow_ops", ], ) py_library( name = "lenet_preprocessing", srcs = ["preprocessing/lenet_preprocessing.py"], deps = [ # "//tensorflow", ], ) py_library( name = "vgg_preprocessing", srcs = ["preprocessing/vgg_preprocessing.py"], deps = [ # "//tensorflow", ], ) py_library( name = "preprocessing_factory", srcs = ["preprocessing/preprocessing_factory.py"], deps = [ ":cifarnet_preprocessing", ":inception_preprocessing", ":lenet_preprocessing", ":vgg_preprocessing", # "//tensorflow", ], ) # Typical networks definitions. py_library( name = "nets", deps = [ ":alexnet", ":cifarnet", ":cyclegan", ":i3d", ":inception", ":lenet", ":mobilenet", ":nasnet", ":overfeat", ":pix2pix", ":pnasnet", ":resnet_v1", ":resnet_v2", ":s3dg", ":vgg", ], ) py_library( name = "alexnet", srcs = ["nets/alexnet.py"], srcs_version = "PY2AND3", deps = [ # "//tensorflow", ], ) py_test( name = "alexnet_test", size = "medium", srcs = ["nets/alexnet_test.py"], srcs_version = "PY2AND3", deps = [ ":alexnet", # "//tensorflow", ], ) py_library( name = "cifarnet", srcs = ["nets/cifarnet.py"], deps = [ # "//tensorflow", ], ) py_library( name = "cyclegan", srcs = ["nets/cyclegan.py"], deps = [ # "//numpy", # "//tensorflow", ], ) py_test( name = "cyclegan_test", srcs = ["nets/cyclegan_test.py"], shard_count = 3, srcs_version = "PY2AND3", deps = [ ":cyclegan", # "//tensorflow", ], ) py_library( name = "dcgan", srcs = ["nets/dcgan.py"], deps = [ # "//tensorflow", ], ) py_test( name = "dcgan_test", srcs = ["nets/dcgan_test.py"], shard_count = 3, srcs_version = "PY2AND3", deps = [ ":dcgan", # "//tensorflow", ], ) py_library( name = "i3d", srcs = ["nets/i3d.py"], srcs_version = "PY2AND3", deps = [ ":i3d_utils", ":s3dg", # "//tensorflow", ], ) py_test( name = "i3d_test", size = "large", srcs = ["nets/i3d_test.py"], shard_count = 3, srcs_version = "PY2AND3", deps = [ ":i3d", # "//tensorflow", ], ) py_library( name = "i3d_utils", srcs = ["nets/i3d_utils.py"], srcs_version = "PY2AND3", deps = [ # "//tensorflow", ], ) py_library( name = "inception", srcs = ["nets/inception.py"], srcs_version = "PY2AND3", deps = [ ":inception_resnet_v2", ":inception_v1", ":inception_v2", ":inception_v3", ":inception_v4", ], ) py_library( name = "inception_utils", srcs = ["nets/inception_utils.py"], srcs_version = "PY2AND3", deps = [ # "//tensorflow", ], ) py_library( name = "inception_v1", srcs = ["nets/inception_v1.py"], srcs_version = "PY2AND3", deps = [ ":inception_utils", # "//tensorflow", ], ) py_library( name = "inception_v2", srcs = ["nets/inception_v2.py"], srcs_version = "PY2AND3", deps = [ ":inception_utils", # "//tensorflow", ], ) py_library( name = "inception_v3", srcs = ["nets/inception_v3.py"], srcs_version = "PY2AND3", deps = [ ":inception_utils", # "//tensorflow", ], ) py_library( name = "inception_v4", srcs = ["nets/inception_v4.py"], srcs_version = "PY2AND3", deps = [ ":inception_utils", # "//tensorflow", ], ) py_library( name = "inception_resnet_v2", srcs = ["nets/inception_resnet_v2.py"], srcs_version = "PY2AND3", deps = [ # "//tensorflow", ], ) py_test( name = "inception_v1_test", size = "large", srcs = ["nets/inception_v1_test.py"], shard_count = 3, srcs_version = "PY2AND3", deps = [ ":inception", # "//numpy", # "//tensorflow", ], ) py_test( name = "inception_v2_test", size = "large", srcs = ["nets/inception_v2_test.py"], shard_count = 3, srcs_version = "PY2AND3", deps = [ ":inception", # "//numpy", # "//tensorflow", ], ) py_test( name = "inception_v3_test", size = "large", srcs = ["nets/inception_v3_test.py"], shard_count = 3, srcs_version = "PY2AND3", deps = [ ":inception", # "//numpy", # "//tensorflow", ], ) py_test( name = "inception_v4_test", size = "large", srcs = ["nets/inception_v4_test.py"], shard_count = 3, srcs_version = "PY2AND3", deps = [ ":inception", # "//tensorflow", ], ) py_test( name = "inception_resnet_v2_test", size = "large", srcs = ["nets/inception_resnet_v2_test.py"], shard_count = 3, srcs_version = "PY2AND3", deps = [ ":inception", # "//tensorflow", ], ) py_library( name = "lenet", srcs = ["nets/lenet.py"], deps = [ # "//tensorflow", ], ) py_library( name = "mobilenet_v1", srcs = ["nets/mobilenet_v1.py"], srcs_version = "PY2AND3", deps = [ # "//tensorflow", ], ) py_library( name = "mobilenet_v2", srcs = glob(["nets/mobilenet/*.py"]), srcs_version = "PY2AND3", deps = [ # "//tensorflow", ], ) py_test( name = "mobilenet_v2_test", srcs = ["nets/mobilenet/mobilenet_v2_test.py"], srcs_version = "PY2AND3", deps = [ ":mobilenet", # "//tensorflow", ], ) py_library( name = "mobilenet", deps = [ ":mobilenet_v1", ":mobilenet_v2", ], ) py_test( name = "mobilenet_v1_test", size = "large", srcs = ["nets/mobilenet_v1_test.py"], shard_count = 3, srcs_version = "PY2AND3", deps = [ ":mobilenet_v1", # "//numpy", # "//tensorflow", ], ) py_binary( name = "mobilenet_v1_train", srcs = ["nets/mobilenet_v1_train.py"], deps = [ ":dataset_factory", ":mobilenet_v1", ":preprocessing_factory", # "//tensorflow", ], ) py_binary( name = "mobilenet_v1_eval", srcs = ["nets/mobilenet_v1_eval.py"], deps = [ ":dataset_factory", ":mobilenet_v1", ":preprocessing_factory", # "//tensorflow", ], ) py_library( name = "nasnet_utils", srcs = ["nets/nasnet/nasnet_utils.py"], srcs_version = "PY2AND3", deps = [ # "//tensorflow", ], ) py_library( name = "nasnet", srcs = ["nets/nasnet/nasnet.py"], srcs_version = "PY2AND3", deps = [ ":nasnet_utils", # "//tensorflow", ], ) py_test( name = "nasnet_utils_test", size = "medium", srcs = ["nets/nasnet/nasnet_utils_test.py"], srcs_version = "PY2AND3", deps = [ ":nasnet_utils", # "//tensorflow", ], ) py_test( name = "nasnet_test", size = "large", srcs = ["nets/nasnet/nasnet_test.py"], shard_count = 10, srcs_version = "PY2AND3", deps = [ ":nasnet", # "//tensorflow", ], ) py_library( name = "pnasnet", srcs = ["nets/nasnet/pnasnet.py"], srcs_version = "PY2AND3", deps = [ ":nasnet", ":nasnet_utils", # "//tensorflow", ], ) py_test( name = "pnasnet_test", size = "large", srcs = ["nets/nasnet/pnasnet_test.py"], shard_count = 4, srcs_version = "PY2AND3", deps = [ ":pnasnet", # "//tensorflow", ], ) py_library( name = "overfeat", srcs = ["nets/overfeat.py"], srcs_version = "PY2AND3", deps = [ # "//tensorflow", ], ) py_test( name = "overfeat_test", size = "medium", srcs = ["nets/overfeat_test.py"], srcs_version = "PY2AND3", deps = [ ":overfeat", # "//tensorflow", ], ) py_library( name = "pix2pix", srcs = ["nets/pix2pix.py"], srcs_version = "PY2AND3", deps = [ # "//tensorflow", ], ) py_test( name = "pix2pix_test", srcs = ["nets/pix2pix_test.py"], srcs_version = "PY2AND3", deps = [ ":pix2pix", # "//tensorflow", ], ) py_library( name = "resnet_utils", srcs = ["nets/resnet_utils.py"], srcs_version = "PY2AND3", deps = [ # "//tensorflow", ], ) py_library( name = "resnet_v1", srcs = ["nets/resnet_v1.py"], srcs_version = "PY2AND3", deps = [ ":resnet_utils", # "//tensorflow", ], ) py_test( name = "resnet_v1_test", size = "medium", srcs = ["nets/resnet_v1_test.py"], shard_count = 2, srcs_version = "PY2AND3", deps = [ ":resnet_utils", ":resnet_v1", # "//numpy", # "//tensorflow", ], ) py_library( name = "resnet_v2", srcs = ["nets/resnet_v2.py"], srcs_version = "PY2AND3", deps = [ ":resnet_utils", # "//tensorflow", ], ) py_test( name = "resnet_v2_test", size = "medium", srcs = ["nets/resnet_v2_test.py"], shard_count = 2, srcs_version = "PY2AND3", deps = [ ":resnet_utils", ":resnet_v2", # "//numpy", # "//tensorflow", ], ) py_library( name = "s3dg", srcs = ["nets/s3dg.py"], srcs_version = "PY2AND3", deps = [ ":i3d_utils", # "//tensorflow", ], ) py_test( name = "s3dg_test", size = "large", srcs = ["nets/s3dg_test.py"], shard_count = 3, srcs_version = "PY2AND3", deps = [ ":s3dg", # "//tensorflow", ], ) py_library( name = "vgg", srcs = ["nets/vgg.py"], srcs_version = "PY2AND3", deps = [ # "//tensorflow", ], ) py_test( name = "vgg_test", size = "medium", srcs = ["nets/vgg_test.py"], srcs_version = "PY2AND3", deps = [ ":vgg", # "//tensorflow", ], ) py_library( name = "nets_factory", srcs = ["nets/nets_factory.py"], deps = [ ":nets", # "//tensorflow", ], ) py_test( name = "nets_factory_test", size = "large", srcs = ["nets/nets_factory_test.py"], shard_count = 3, srcs_version = "PY2AND3", deps = [ ":nets_factory", # "//tensorflow", ], ) py_library( name = "train_image_classifier_lib", srcs = ["train_image_classifier.py"], deps = [ ":dataset_factory", ":model_deploy", ":nets_factory", ":preprocessing_factory", # "//tensorflow", ], ) py_binary( name = "train_image_classifier", srcs = ["train_image_classifier.py"], # WARNING: not supported in bazel; will be commented out by copybara. # paropts = ["--compress"], deps = [ ":train_image_classifier_lib", ], ) py_library( name = "eval_image_classifier_lib", srcs = ["eval_image_classifier.py"], deps = [ ":dataset_factory", ":nets_factory", ":preprocessing_factory", # "//tensorflow", ], ) py_binary( name = "eval_image_classifier", srcs = ["eval_image_classifier.py"], deps = [ ":eval_image_classifier_lib", ], ) py_binary( name = "export_inference_graph", srcs = ["export_inference_graph.py"], # WARNING: not supported in bazel; will be commented out by copybara. # paropts = ["--compress"], deps = [ ":dataset_factory", ":nets_factory", # "//tensorflow", # "//tensorflow/python:platform", ], ) py_test( name = "export_inference_graph_test", size = "medium", srcs = ["export_inference_graph_test.py"], srcs_version = "PY2AND3", tags = [ "manual", ], deps = [ ":export_inference_graph", # "//tensorflow", # "//tensorflow/python:platform", ], )