# Copyright 2022 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Ops for differential privacy (gradient) transforms.""" from typing import List, Tuple import tensorflow as tf def clip_l2_norm(grads_vars: List[Tuple[tf.Tensor, tf.Tensor]], l2_norm_clip: float) -> List[Tuple[tf.Tensor, tf.Tensor]]: """Clip gradients by global norm.""" gradients = [] variables = [] for (g, v) in grads_vars: gradients.append(g) variables.append(v) clipped_gradients = tf.clip_by_global_norm(gradients, l2_norm_clip)[0] return list(zip(clipped_gradients, variables)) def add_noise(grads_vars: List[Tuple[tf.Tensor, tf.Tensor]], noise_stddev: float) -> List[Tuple[tf.Tensor, tf.Tensor]]: """Add noise to gradients.""" ret = [] for (g, v) in grads_vars: noise = tf.random.normal(tf.shape(g), stddev=noise_stddev) ret.append((g + noise, v)) return ret