# Copyright 2022 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tests for tensorflow_models.official.projects.detr.detr.""" import tensorflow as tf from official.projects.detr.modeling import detr from official.vision.modeling.backbones import resnet class DetrTest(tf.test.TestCase): def test_forward(self): num_queries = 10 hidden_size = 128 num_classes = 10 image_size = 640 batch_size = 2 backbone = resnet.ResNet(50, bn_trainable=False) backbone_endpoint_name = '5' model = detr.DETR(backbone, backbone_endpoint_name, num_queries, hidden_size, num_classes) outs = model(tf.ones((batch_size, image_size, image_size, 3))) self.assertLen(outs, 6) # intermediate decoded outputs. for out in outs: self.assertAllEqual( tf.shape(out['cls_outputs']), (batch_size, num_queries, num_classes)) self.assertAllEqual( tf.shape(out['box_outputs']), (batch_size, num_queries, 4)) def test_get_from_config_detr_transformer(self): config = { 'num_encoder_layers': 1, 'num_decoder_layers': 2, 'dropout_rate': 0.5, } detr_model = detr.DETRTransformer.from_config(config) retrieved_config = detr_model.get_config() self.assertEqual(config, retrieved_config) def test_get_from_config_detr(self): config = { 'backbone': resnet.ResNet(50, bn_trainable=False), 'backbone_endpoint_name': '5', 'num_queries': 2, 'hidden_size': 4, 'num_classes': 10, 'num_encoder_layers': 4, 'num_decoder_layers': 5, 'dropout_rate': 0.5, } detr_model = detr.DETR.from_config(config) retrieved_config = detr_model.get_config() self.assertEqual(config, retrieved_config) if __name__ == '__main__': tf.test.main()