# Copyright 2019 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Utilities to save models.""" from __future__ import absolute_import from __future__ import division # from __future__ import google_type_annotations from __future__ import print_function import os from absl import logging import tensorflow as tf import typing def export_bert_model( model_export_path: typing.Text, model: tf.keras.Model, checkpoint_dir: typing.Optional[typing.Text] = None) -> None: """Export BERT model for serving which does not include the optimizer. Arguments: model_export_path: Path to which exported model will be saved. model: Keras model object to export. checkpoint_dir: Path from which model weights will be loaded, if specified. Raises: ValueError when either model_export_path or model is not specified. """ if not model_export_path: raise ValueError('model_export_path must be specified.') if not isinstance(model, tf.keras.Model): raise ValueError('model must be a tf.keras.Model object.') if checkpoint_dir: # Restores the model from latest checkpoint. checkpoint = tf.train.Checkpoint(model=model) latest_checkpoint_file = tf.train.latest_checkpoint(checkpoint_dir) assert latest_checkpoint_file logging.info('Checkpoint file %s found and restoring from ' 'checkpoint', latest_checkpoint_file) checkpoint.restore(latest_checkpoint_file).assert_existing_objects_matched() model.save(model_export_path, include_optimizer=False, save_format='tf') def export_pretraining_checkpoint( checkpoint_dir: typing.Text, model: tf.keras.Model, checkpoint_name: typing.Optional[ typing.Text] = 'pretrained/bert_model.ckpt'): """Exports BERT model for as a checkpoint without optimizer. Arguments: checkpoint_dir: Path to where training model checkpoints are stored. model: Keras model object to export. checkpoint_name: File name or suffix path to export pretrained checkpoint. Raises: ValueError when either checkpoint_dir or model is not specified. """ if not checkpoint_dir: raise ValueError('checkpoint_dir must be specified.') if not isinstance(model, tf.keras.Model): raise ValueError('model must be a tf.keras.Model object.') checkpoint = tf.train.Checkpoint(model=model) latest_checkpoint_file = tf.train.latest_checkpoint(checkpoint_dir) assert latest_checkpoint_file logging.info('Checkpoint file %s found and restoring from ' 'checkpoint', latest_checkpoint_file) status = checkpoint.restore(latest_checkpoint_file) status.assert_existing_objects_matched().expect_partial() saved_path = checkpoint.save(os.path.join(checkpoint_dir, checkpoint_name)) logging.info('Exporting the model as a new TF checkpoint: %s', saved_path) class BertModelCheckpoint(tf.keras.callbacks.Callback): """Keras callback that saves model at the end of every epoch.""" def __init__(self, checkpoint_dir, checkpoint): """Initializes BertModelCheckpoint. Arguments: checkpoint_dir: Directory of the to be saved checkpoint file. checkpoint: tf.train.Checkpoint object. """ super(BertModelCheckpoint, self).__init__() self.checkpoint_file_name = os.path.join( checkpoint_dir, 'bert_training_checkpoint_step_{global_step}.ckpt') assert isinstance(checkpoint, tf.train.Checkpoint) self.checkpoint = checkpoint def on_epoch_end(self, epoch, logs=None): global_step = tf.keras.backend.get_value(self.model.optimizer.iterations) formatted_file_name = self.checkpoint_file_name.format( global_step=global_step) saved_path = self.checkpoint.save(formatted_file_name) logging.info('Saving model TF checkpoint to : %s', saved_path)