# Copyright 2021 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Preprocessing ops.""" import math from six.moves import range import tensorflow as tf from official.vision.beta.ops import box_ops CENTER_CROP_FRACTION = 0.875 def clip_or_pad_to_fixed_size(input_tensor, size, constant_values=0): """Pads data to a fixed length at the first dimension. Args: input_tensor: `Tensor` with any dimension. size: `int` number for the first dimension of output Tensor. constant_values: `int` value assigned to the paddings. Returns: `Tensor` with the first dimension padded to `size`. """ input_shape = input_tensor.get_shape().as_list() padding_shape = [] # Computes the padding length on the first dimension, clip input tensor if it # is longer than `size`. input_length = tf.shape(input_tensor)[0] input_length = tf.clip_by_value(input_length, 0, size) input_tensor = input_tensor[:input_length] padding_length = tf.maximum(0, size - input_length) padding_shape.append(padding_length) # Copies shapes of the rest of input shape dimensions. for i in range(1, len(input_shape)): padding_shape.append(tf.shape(input_tensor)[i]) # Pads input tensor to the fixed first dimension. paddings = tf.cast(constant_values * tf.ones(padding_shape), input_tensor.dtype) padded_tensor = tf.concat([input_tensor, paddings], axis=0) output_shape = input_shape output_shape[0] = size padded_tensor.set_shape(output_shape) return padded_tensor def normalize_image(image, offset=(0.485, 0.456, 0.406), scale=(0.229, 0.224, 0.225)): """Normalizes the image to zero mean and unit variance.""" with tf.name_scope('normalize_image'): image = tf.image.convert_image_dtype(image, dtype=tf.float32) offset = tf.constant(offset) offset = tf.expand_dims(offset, axis=0) offset = tf.expand_dims(offset, axis=0) image -= offset scale = tf.constant(scale) scale = tf.expand_dims(scale, axis=0) scale = tf.expand_dims(scale, axis=0) image /= scale return image def compute_padded_size(desired_size, stride): """Compute the padded size given the desired size and the stride. The padded size will be the smallest rectangle, such that each dimension is the smallest multiple of the stride which is larger than the desired dimension. For example, if desired_size = (100, 200) and stride = 32, the output padded_size = (128, 224). Args: desired_size: a `Tensor` or `int` list/tuple of two elements representing [height, width] of the target output image size. stride: an integer, the stride of the backbone network. Returns: padded_size: a `Tensor` or `int` list/tuple of two elements representing [height, width] of the padded output image size. """ if isinstance(desired_size, list) or isinstance(desired_size, tuple): padded_size = [int(math.ceil(d * 1.0 / stride) * stride) for d in desired_size] else: padded_size = tf.cast( tf.math.ceil( tf.cast(desired_size, dtype=tf.float32) / stride) * stride, tf.int32) return padded_size def resize_and_crop_image(image, desired_size, padded_size, aug_scale_min=1.0, aug_scale_max=1.0, seed=1, method=tf.image.ResizeMethod.BILINEAR): """Resizes the input image to output size (RetinaNet style). Resize and pad images given the desired output size of the image and stride size. Here are the preprocessing steps. 1. For a given image, keep its aspect ratio and rescale the image to make it the largest rectangle to be bounded by the rectangle specified by the `desired_size`. 2. Pad the rescaled image to the padded_size. Args: image: a `Tensor` of shape [height, width, 3] representing an image. desired_size: a `Tensor` or `int` list/tuple of two elements representing [height, width] of the desired actual output image size. padded_size: a `Tensor` or `int` list/tuple of two elements representing [height, width] of the padded output image size. Padding will be applied after scaling the image to the desired_size. aug_scale_min: a `float` with range between [0, 1.0] representing minimum random scale applied to desired_size for training scale jittering. aug_scale_max: a `float` with range between [1.0, inf] representing maximum random scale applied to desired_size for training scale jittering. seed: seed for random scale jittering. method: function to resize input image to scaled image. Returns: output_image: `Tensor` of shape [height, width, 3] where [height, width] equals to `output_size`. image_info: a 2D `Tensor` that encodes the information of the image and the applied preprocessing. It is in the format of [[original_height, original_width], [desired_height, desired_width], [y_scale, x_scale], [y_offset, x_offset]], where [desired_height, desired_width] is the actual scaled image size, and [y_scale, x_scale] is the scaling factor, which is the ratio of scaled dimension / original dimension. """ with tf.name_scope('resize_and_crop_image'): image_size = tf.cast(tf.shape(image)[0:2], tf.float32) random_jittering = (aug_scale_min != 1.0 or aug_scale_max != 1.0) if random_jittering: random_scale = tf.random.uniform( [], aug_scale_min, aug_scale_max, seed=seed) scaled_size = tf.round(random_scale * desired_size) else: scaled_size = desired_size scale = tf.minimum( scaled_size[0] / image_size[0], scaled_size[1] / image_size[1]) scaled_size = tf.round(image_size * scale) # Computes 2D image_scale. image_scale = scaled_size / image_size # Selects non-zero random offset (x, y) if scaled image is larger than # desired_size. if random_jittering: max_offset = scaled_size - desired_size max_offset = tf.where( tf.less(max_offset, 0), tf.zeros_like(max_offset), max_offset) offset = max_offset * tf.random.uniform([2,], 0, 1, seed=seed) offset = tf.cast(offset, tf.int32) else: offset = tf.zeros((2,), tf.int32) scaled_image = tf.image.resize( image, tf.cast(scaled_size, tf.int32), method=method) if random_jittering: scaled_image = scaled_image[ offset[0]:offset[0] + desired_size[0], offset[1]:offset[1] + desired_size[1], :] output_image = tf.image.pad_to_bounding_box( scaled_image, 0, 0, padded_size[0], padded_size[1]) image_info = tf.stack([ image_size, tf.constant(desired_size, dtype=tf.float32), image_scale, tf.cast(offset, tf.float32)]) return output_image, image_info def resize_and_crop_image_v2(image, short_side, long_side, padded_size, aug_scale_min=1.0, aug_scale_max=1.0, seed=1, method=tf.image.ResizeMethod.BILINEAR): """Resizes the input image to output size (Faster R-CNN style). Resize and pad images given the specified short / long side length and the stride size. Here are the preprocessing steps. 1. For a given image, keep its aspect ratio and first try to rescale the short side of the original image to `short_side`. 2. If the scaled image after 1 has a long side that exceeds `long_side`, keep the aspect ratio and rescal the long side of the image to `long_side`. 2. Pad the rescaled image to the padded_size. Args: image: a `Tensor` of shape [height, width, 3] representing an image. short_side: a scalar `Tensor` or `int` representing the desired short side to be rescaled to. long_side: a scalar `Tensor` or `int` representing the desired long side to be rescaled to. padded_size: a `Tensor` or `int` list/tuple of two elements representing [height, width] of the padded output image size. Padding will be applied after scaling the image to the desired_size. aug_scale_min: a `float` with range between [0, 1.0] representing minimum random scale applied to desired_size for training scale jittering. aug_scale_max: a `float` with range between [1.0, inf] representing maximum random scale applied to desired_size for training scale jittering. seed: seed for random scale jittering. method: function to resize input image to scaled image. Returns: output_image: `Tensor` of shape [height, width, 3] where [height, width] equals to `output_size`. image_info: a 2D `Tensor` that encodes the information of the image and the applied preprocessing. It is in the format of [[original_height, original_width], [desired_height, desired_width], [y_scale, x_scale], [y_offset, x_offset]], where [desired_height, desired_width] is the actual scaled image size, and [y_scale, x_scale] is the scaling factor, which is the ratio of scaled dimension / original dimension. """ with tf.name_scope('resize_and_crop_image_v2'): image_size = tf.cast(tf.shape(image)[0:2], tf.float32) scale_using_short_side = ( short_side / tf.math.minimum(image_size[0], image_size[1])) scale_using_long_side = ( long_side / tf.math.maximum(image_size[0], image_size[1])) scaled_size = tf.math.round(image_size * scale_using_short_side) scaled_size = tf.where( tf.math.greater( tf.math.maximum(scaled_size[0], scaled_size[1]), long_side), tf.math.round(image_size * scale_using_long_side), scaled_size) desired_size = scaled_size random_jittering = (aug_scale_min != 1.0 or aug_scale_max != 1.0) if random_jittering: random_scale = tf.random.uniform( [], aug_scale_min, aug_scale_max, seed=seed) scaled_size = tf.math.round(random_scale * scaled_size) # Computes 2D image_scale. image_scale = scaled_size / image_size # Selects non-zero random offset (x, y) if scaled image is larger than # desired_size. if random_jittering: max_offset = scaled_size - desired_size max_offset = tf.where( tf.math.less(max_offset, 0), tf.zeros_like(max_offset), max_offset) offset = max_offset * tf.random.uniform([2,], 0, 1, seed=seed) offset = tf.cast(offset, tf.int32) else: offset = tf.zeros((2,), tf.int32) scaled_image = tf.image.resize( image, tf.cast(scaled_size, tf.int32), method=method) if random_jittering: scaled_image = scaled_image[ offset[0]:offset[0] + desired_size[0], offset[1]:offset[1] + desired_size[1], :] output_image = tf.image.pad_to_bounding_box( scaled_image, 0, 0, padded_size[0], padded_size[1]) image_info = tf.stack([ image_size, tf.cast(desired_size, dtype=tf.float32), image_scale, tf.cast(offset, tf.float32)]) return output_image, image_info def center_crop_image(image): """Center crop a square shape slice from the input image. It crops a square shape slice from the image. The side of the actual crop is 224 / 256 = 0.875 of the short side of the original image. References: [1] Very Deep Convolutional Networks for Large-Scale Image Recognition https://arxiv.org/abs/1409.1556 [2] Deep Residual Learning for Image Recognition https://arxiv.org/abs/1512.03385 Args: image: a Tensor of shape [height, width, 3] representing the input image. Returns: cropped_image: a Tensor representing the center cropped image. """ with tf.name_scope('center_crop_image'): image_size = tf.cast(tf.shape(image)[:2], dtype=tf.float32) crop_size = ( CENTER_CROP_FRACTION * tf.math.minimum(image_size[0], image_size[1])) crop_offset = tf.cast((image_size - crop_size) / 2.0, dtype=tf.int32) crop_size = tf.cast(crop_size, dtype=tf.int32) cropped_image = image[ crop_offset[0]:crop_offset[0] + crop_size, crop_offset[1]:crop_offset[1] + crop_size, :] return cropped_image def center_crop_image_v2(image_bytes, image_shape): """Center crop a square shape slice from the input image. It crops a square shape slice from the image. The side of the actual crop is 224 / 256 = 0.875 of the short side of the original image. References: [1] Very Deep Convolutional Networks for Large-Scale Image Recognition https://arxiv.org/abs/1409.1556 [2] Deep Residual Learning for Image Recognition https://arxiv.org/abs/1512.03385 This is a faster version of `center_crop_image` which takes the original image bytes and image size as the inputs, and partially decode the JPEG bytes according to the center crop. Args: image_bytes: a Tensor of type string representing the raw image bytes. image_shape: a Tensor specifying the shape of the raw image. Returns: cropped_image: a Tensor representing the center cropped image. """ with tf.name_scope('center_image_crop_v2'): image_shape = tf.cast(image_shape, tf.float32) crop_size = ( CENTER_CROP_FRACTION * tf.math.minimum(image_shape[0], image_shape[1])) crop_offset = tf.cast((image_shape - crop_size) / 2.0, dtype=tf.int32) crop_size = tf.cast(crop_size, dtype=tf.int32) crop_window = tf.stack( [crop_offset[0], crop_offset[1], crop_size, crop_size]) cropped_image = tf.image.decode_and_crop_jpeg( image_bytes, crop_window, channels=3) return cropped_image def random_crop_image(image, aspect_ratio_range=(3. / 4., 4. / 3.), area_range=(0.08, 1.0), max_attempts=10, seed=1): """Randomly crop an arbitrary shaped slice from the input image. Args: image: a Tensor of shape [height, width, 3] representing the input image. aspect_ratio_range: a list of floats. The cropped area of the image must have an aspect ratio = width / height within this range. area_range: a list of floats. The cropped reas of the image must contain a fraction of the input image within this range. max_attempts: the number of attempts at generating a cropped region of the image of the specified constraints. After max_attempts failures, return the entire image. seed: the seed of the random generator. Returns: cropped_image: a Tensor representing the random cropped image. Can be the original image if max_attempts is exhausted. """ with tf.name_scope('random_crop_image'): crop_offset, crop_size, _ = tf.image.sample_distorted_bounding_box( tf.shape(image), tf.constant([0.0, 0.0, 1.0, 1.0], dtype=tf.float32, shape=[1, 1, 4]), seed=seed, min_object_covered=area_range[0], aspect_ratio_range=aspect_ratio_range, area_range=area_range, max_attempts=max_attempts) cropped_image = tf.slice(image, crop_offset, crop_size) return cropped_image def random_crop_image_v2(image_bytes, image_shape, aspect_ratio_range=(3. / 4., 4. / 3.), area_range=(0.08, 1.0), max_attempts=10, seed=1): """Randomly crop an arbitrary shaped slice from the input image. This is a faster version of `random_crop_image` which takes the original image bytes and image size as the inputs, and partially decode the JPEG bytes according to the generated crop. Args: image_bytes: a Tensor of type string representing the raw image bytes. image_shape: a Tensor specifying the shape of the raw image. aspect_ratio_range: a list of floats. The cropped area of the image must have an aspect ratio = width / height within this range. area_range: a list of floats. The cropped reas of the image must contain a fraction of the input image within this range. max_attempts: the number of attempts at generating a cropped region of the image of the specified constraints. After max_attempts failures, return the entire image. seed: the seed of the random generator. Returns: cropped_image: a Tensor representing the random cropped image. Can be the original image if max_attempts is exhausted. """ with tf.name_scope('random_crop_image_v2'): crop_offset, crop_size, _ = tf.image.sample_distorted_bounding_box( image_shape, tf.constant([0.0, 0.0, 1.0, 1.0], dtype=tf.float32, shape=[1, 1, 4]), seed=seed, min_object_covered=area_range[0], aspect_ratio_range=aspect_ratio_range, area_range=area_range, max_attempts=max_attempts) offset_y, offset_x, _ = tf.unstack(crop_offset) crop_height, crop_width, _ = tf.unstack(crop_size) crop_window = tf.stack([offset_y, offset_x, crop_height, crop_width]) cropped_image = tf.image.decode_and_crop_jpeg( image_bytes, crop_window, channels=3) return cropped_image def resize_and_crop_boxes(boxes, image_scale, output_size, offset): """Resizes boxes to output size with scale and offset. Args: boxes: `Tensor` of shape [N, 4] representing ground truth boxes. image_scale: 2D float `Tensor` representing scale factors that apply to [height, width] of input image. output_size: 2D `Tensor` or `int` representing [height, width] of target output image size. offset: 2D `Tensor` representing top-left corner [y0, x0] to crop scaled boxes. Returns: boxes: `Tensor` of shape [N, 4] representing the scaled boxes. """ with tf.name_scope('resize_and_crop_boxes'): # Adjusts box coordinates based on image_scale and offset. boxes *= tf.tile(tf.expand_dims(image_scale, axis=0), [1, 2]) boxes -= tf.tile(tf.expand_dims(offset, axis=0), [1, 2]) # Clips the boxes. boxes = box_ops.clip_boxes(boxes, output_size) return boxes def resize_and_crop_masks(masks, image_scale, output_size, offset): """Resizes boxes to output size with scale and offset. Args: masks: `Tensor` of shape [N, H, W, 1] representing ground truth masks. image_scale: 2D float `Tensor` representing scale factors that apply to [height, width] of input image. output_size: 2D `Tensor` or `int` representing [height, width] of target output image size. offset: 2D `Tensor` representing top-left corner [y0, x0] to crop scaled boxes. Returns: masks: `Tensor` of shape [N, H, W, 1] representing the scaled masks. """ with tf.name_scope('resize_and_crop_masks'): mask_size = tf.cast(tf.shape(masks)[1:3], tf.float32) # Pad masks to avoid empty mask annotations. masks = tf.concat( [tf.zeros([1, mask_size[0], mask_size[1], 1]), masks], axis=0) scaled_size = tf.cast(image_scale * mask_size, tf.int32) scaled_masks = tf.image.resize( masks, scaled_size, method=tf.image.ResizeMethod.NEAREST_NEIGHBOR) offset = tf.cast(offset, tf.int32) scaled_masks = scaled_masks[ :, offset[0]:offset[0] + output_size[0], offset[1]:offset[1] + output_size[1], :] output_masks = tf.image.pad_to_bounding_box( scaled_masks, 0, 0, output_size[0], output_size[1]) # Remove padding. output_masks = output_masks[1::] return output_masks def horizontal_flip_image(image): """Flips image horizontally.""" return tf.image.flip_left_right(image) def horizontal_flip_boxes(normalized_boxes): """Flips normalized boxes horizontally.""" ymin, xmin, ymax, xmax = tf.split( value=normalized_boxes, num_or_size_splits=4, axis=1) flipped_xmin = tf.subtract(1.0, xmax) flipped_xmax = tf.subtract(1.0, xmin) flipped_boxes = tf.concat([ymin, flipped_xmin, ymax, flipped_xmax], 1) return flipped_boxes def horizontal_flip_masks(masks): """Flips masks horizontally.""" return masks[:, :, ::-1] def random_horizontal_flip(image, normalized_boxes=None, masks=None, seed=1): """Randomly flips input image and bounding boxes.""" with tf.name_scope('random_horizontal_flip'): do_flip = tf.greater(tf.random.uniform([], seed=seed), 0.5) image = tf.cond( do_flip, lambda: horizontal_flip_image(image), lambda: image) if normalized_boxes is not None: normalized_boxes = tf.cond( do_flip, lambda: horizontal_flip_boxes(normalized_boxes), lambda: normalized_boxes) if masks is not None: masks = tf.cond( do_flip, lambda: horizontal_flip_masks(masks), lambda: masks) return image, normalized_boxes, masks