# Copyright 2018 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for slim.pnasnet.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import tensorflow as tf from tensorflow.contrib import slim as contrib_slim from nets.nasnet import pnasnet slim = contrib_slim class PNASNetTest(tf.test.TestCase): def testBuildLogitsLargeModel(self): batch_size = 5 height, width = 331, 331 num_classes = 1000 inputs = tf.random.uniform((batch_size, height, width, 3)) tf.compat.v1.train.create_global_step() with slim.arg_scope(pnasnet.pnasnet_large_arg_scope()): logits, end_points = pnasnet.build_pnasnet_large(inputs, num_classes) auxlogits = end_points['AuxLogits'] predictions = end_points['Predictions'] self.assertListEqual(auxlogits.get_shape().as_list(), [batch_size, num_classes]) self.assertListEqual(logits.get_shape().as_list(), [batch_size, num_classes]) self.assertListEqual(predictions.get_shape().as_list(), [batch_size, num_classes]) def testBuildLogitsMobileModel(self): batch_size = 5 height, width = 224, 224 num_classes = 1000 inputs = tf.random.uniform((batch_size, height, width, 3)) tf.compat.v1.train.create_global_step() with slim.arg_scope(pnasnet.pnasnet_mobile_arg_scope()): logits, end_points = pnasnet.build_pnasnet_mobile(inputs, num_classes) auxlogits = end_points['AuxLogits'] predictions = end_points['Predictions'] self.assertListEqual(auxlogits.get_shape().as_list(), [batch_size, num_classes]) self.assertListEqual(logits.get_shape().as_list(), [batch_size, num_classes]) self.assertListEqual(predictions.get_shape().as_list(), [batch_size, num_classes]) def testBuildNonExistingLayerLargeModel(self): """Tests that the model is built correctly without unnecessary layers.""" inputs = tf.random.uniform((5, 331, 331, 3)) tf.compat.v1.train.create_global_step() with slim.arg_scope(pnasnet.pnasnet_large_arg_scope()): pnasnet.build_pnasnet_large(inputs, 1000) vars_names = [x.op.name for x in tf.compat.v1.trainable_variables()] self.assertIn('cell_stem_0/1x1/weights', vars_names) self.assertNotIn('cell_stem_1/comb_iter_0/right/1x1/weights', vars_names) def testBuildNonExistingLayerMobileModel(self): """Tests that the model is built correctly without unnecessary layers.""" inputs = tf.random.uniform((5, 224, 224, 3)) tf.compat.v1.train.create_global_step() with slim.arg_scope(pnasnet.pnasnet_mobile_arg_scope()): pnasnet.build_pnasnet_mobile(inputs, 1000) vars_names = [x.op.name for x in tf.compat.v1.trainable_variables()] self.assertIn('cell_stem_0/1x1/weights', vars_names) self.assertNotIn('cell_stem_1/comb_iter_0/right/1x1/weights', vars_names) def testBuildPreLogitsLargeModel(self): batch_size = 5 height, width = 331, 331 num_classes = None inputs = tf.random.uniform((batch_size, height, width, 3)) tf.compat.v1.train.create_global_step() with slim.arg_scope(pnasnet.pnasnet_large_arg_scope()): net, end_points = pnasnet.build_pnasnet_large(inputs, num_classes) self.assertFalse('AuxLogits' in end_points) self.assertFalse('Predictions' in end_points) self.assertTrue(net.op.name.startswith('final_layer/Mean')) self.assertListEqual(net.get_shape().as_list(), [batch_size, 4320]) def testBuildPreLogitsMobileModel(self): batch_size = 5 height, width = 224, 224 num_classes = None inputs = tf.random.uniform((batch_size, height, width, 3)) tf.compat.v1.train.create_global_step() with slim.arg_scope(pnasnet.pnasnet_mobile_arg_scope()): net, end_points = pnasnet.build_pnasnet_mobile(inputs, num_classes) self.assertFalse('AuxLogits' in end_points) self.assertFalse('Predictions' in end_points) self.assertTrue(net.op.name.startswith('final_layer/Mean')) self.assertListEqual(net.get_shape().as_list(), [batch_size, 1080]) def testAllEndPointsShapesLargeModel(self): batch_size = 5 height, width = 331, 331 num_classes = 1000 inputs = tf.random.uniform((batch_size, height, width, 3)) tf.compat.v1.train.create_global_step() with slim.arg_scope(pnasnet.pnasnet_large_arg_scope()): _, end_points = pnasnet.build_pnasnet_large(inputs, num_classes) endpoints_shapes = {'Stem': [batch_size, 42, 42, 540], 'Cell_0': [batch_size, 42, 42, 1080], 'Cell_1': [batch_size, 42, 42, 1080], 'Cell_2': [batch_size, 42, 42, 1080], 'Cell_3': [batch_size, 42, 42, 1080], 'Cell_4': [batch_size, 21, 21, 2160], 'Cell_5': [batch_size, 21, 21, 2160], 'Cell_6': [batch_size, 21, 21, 2160], 'Cell_7': [batch_size, 21, 21, 2160], 'Cell_8': [batch_size, 11, 11, 4320], 'Cell_9': [batch_size, 11, 11, 4320], 'Cell_10': [batch_size, 11, 11, 4320], 'Cell_11': [batch_size, 11, 11, 4320], 'global_pool': [batch_size, 4320], # Logits and predictions 'AuxLogits': [batch_size, 1000], 'Predictions': [batch_size, 1000], 'Logits': [batch_size, 1000], } self.assertEqual(len(end_points), 17) self.assertItemsEqual(endpoints_shapes.keys(), end_points.keys()) for endpoint_name in endpoints_shapes: tf.compat.v1.logging.info('Endpoint name: {}'.format(endpoint_name)) expected_shape = endpoints_shapes[endpoint_name] self.assertIn(endpoint_name, end_points) self.assertListEqual(end_points[endpoint_name].get_shape().as_list(), expected_shape) def testAllEndPointsShapesMobileModel(self): batch_size = 5 height, width = 224, 224 num_classes = 1000 inputs = tf.random.uniform((batch_size, height, width, 3)) tf.compat.v1.train.create_global_step() with slim.arg_scope(pnasnet.pnasnet_mobile_arg_scope()): _, end_points = pnasnet.build_pnasnet_mobile(inputs, num_classes) endpoints_shapes = { 'Stem': [batch_size, 28, 28, 135], 'Cell_0': [batch_size, 28, 28, 270], 'Cell_1': [batch_size, 28, 28, 270], 'Cell_2': [batch_size, 28, 28, 270], 'Cell_3': [batch_size, 14, 14, 540], 'Cell_4': [batch_size, 14, 14, 540], 'Cell_5': [batch_size, 14, 14, 540], 'Cell_6': [batch_size, 7, 7, 1080], 'Cell_7': [batch_size, 7, 7, 1080], 'Cell_8': [batch_size, 7, 7, 1080], 'global_pool': [batch_size, 1080], # Logits and predictions 'AuxLogits': [batch_size, num_classes], 'Predictions': [batch_size, num_classes], 'Logits': [batch_size, num_classes], } self.assertEqual(len(end_points), 14) self.assertItemsEqual(endpoints_shapes.keys(), end_points.keys()) for endpoint_name in endpoints_shapes: tf.compat.v1.logging.info('Endpoint name: {}'.format(endpoint_name)) expected_shape = endpoints_shapes[endpoint_name] self.assertIn(endpoint_name, end_points) self.assertListEqual(end_points[endpoint_name].get_shape().as_list(), expected_shape) def testNoAuxHeadLargeModel(self): batch_size = 5 height, width = 331, 331 num_classes = 1000 for use_aux_head in (True, False): tf.compat.v1.reset_default_graph() inputs = tf.random.uniform((batch_size, height, width, 3)) tf.compat.v1.train.create_global_step() config = pnasnet.large_imagenet_config() config.set_hparam('use_aux_head', int(use_aux_head)) with slim.arg_scope(pnasnet.pnasnet_large_arg_scope()): _, end_points = pnasnet.build_pnasnet_large(inputs, num_classes, config=config) self.assertEqual('AuxLogits' in end_points, use_aux_head) def testNoAuxHeadMobileModel(self): batch_size = 5 height, width = 224, 224 num_classes = 1000 for use_aux_head in (True, False): tf.compat.v1.reset_default_graph() inputs = tf.random.uniform((batch_size, height, width, 3)) tf.compat.v1.train.create_global_step() config = pnasnet.mobile_imagenet_config() config.set_hparam('use_aux_head', int(use_aux_head)) with slim.arg_scope(pnasnet.pnasnet_mobile_arg_scope()): _, end_points = pnasnet.build_pnasnet_mobile( inputs, num_classes, config=config) self.assertEqual('AuxLogits' in end_points, use_aux_head) def testOverrideHParamsLargeModel(self): batch_size = 5 height, width = 331, 331 num_classes = 1000 inputs = tf.random.uniform((batch_size, height, width, 3)) tf.compat.v1.train.create_global_step() config = pnasnet.large_imagenet_config() config.set_hparam('data_format', 'NCHW') with slim.arg_scope(pnasnet.pnasnet_large_arg_scope()): _, end_points = pnasnet.build_pnasnet_large( inputs, num_classes, config=config) self.assertListEqual( end_points['Stem'].shape.as_list(), [batch_size, 540, 42, 42]) def testOverrideHParamsMobileModel(self): batch_size = 5 height, width = 224, 224 num_classes = 1000 inputs = tf.random.uniform((batch_size, height, width, 3)) tf.compat.v1.train.create_global_step() config = pnasnet.mobile_imagenet_config() config.set_hparam('data_format', 'NCHW') with slim.arg_scope(pnasnet.pnasnet_mobile_arg_scope()): _, end_points = pnasnet.build_pnasnet_mobile( inputs, num_classes, config=config) self.assertListEqual(end_points['Stem'].shape.as_list(), [batch_size, 135, 28, 28]) def testUseBoundedAcitvationMobileModel(self): batch_size = 1 height, width = 224, 224 num_classes = 1000 for use_bounded_activation in (True, False): tf.compat.v1.reset_default_graph() inputs = tf.random.uniform((batch_size, height, width, 3)) config = pnasnet.mobile_imagenet_config() config.set_hparam('use_bounded_activation', use_bounded_activation) with slim.arg_scope(pnasnet.pnasnet_mobile_arg_scope()): _, _ = pnasnet.build_pnasnet_mobile( inputs, num_classes, config=config) for node in tf.compat.v1.get_default_graph().as_graph_def().node: if node.op.startswith('Relu'): self.assertEqual(node.op == 'Relu6', use_bounded_activation) if __name__ == '__main__': tf.test.main()