# Copyright 2018 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Utilities for building I3D network models.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np import tensorflow as tf from tensorflow.contrib import framework as contrib_framework from tensorflow.contrib import layers as contrib_layers # Orignaly, add_arg_scope = slim.add_arg_scope and layers = slim, now switch to # more update-to-date tf.contrib.* API. add_arg_scope = contrib_framework.add_arg_scope layers = contrib_layers def center_initializer(): """Centering Initializer for I3D. This initializer allows identity mapping for temporal convolution at the initialization, which is critical for a desired convergence behavior for training a seprable I3D model. The centering behavior of this initializer requires an odd-sized kernel, typically set to 3. Returns: A weight initializer op used in temporal convolutional layers. Raises: ValueError: Input tensor data type has to be tf.float32. ValueError: If input tensor is not a 5-D tensor. ValueError: If input and output channel dimensions are different. ValueError: If spatial kernel sizes are not 1. ValueError: If temporal kernel size is even. """ def _initializer(shape, dtype=tf.float32, partition_info=None): # pylint: disable=unused-argument """Initializer op.""" if dtype != tf.float32 and dtype != tf.bfloat16: raise ValueError( 'Input tensor data type has to be tf.float32 or tf.bfloat16.') if len(shape) != 5: raise ValueError('Input tensor has to be 5-D.') if shape[3] != shape[4]: raise ValueError('Input and output channel dimensions must be the same.') if shape[1] != 1 or shape[2] != 1: raise ValueError('Spatial kernel sizes must be 1 (pointwise conv).') if shape[0] % 2 == 0: raise ValueError('Temporal kernel size has to be odd.') center_pos = int(shape[0] / 2) init_mat = np.zeros( [shape[0], shape[1], shape[2], shape[3], shape[4]], dtype=np.float32) for i in range(0, shape[3]): init_mat[center_pos, 0, 0, i, i] = 1.0 init_op = tf.constant(init_mat, dtype=dtype) return init_op return _initializer @add_arg_scope def conv3d_spatiotemporal(inputs, num_outputs, kernel_size, stride=1, padding='SAME', activation_fn=None, normalizer_fn=None, normalizer_params=None, weights_regularizer=None, separable=False, data_format='NDHWC', scope=''): """A wrapper for conv3d to model spatiotemporal representations. This allows switching between original 3D convolution and separable 3D convolutions for spatial and temporal features respectively. On Kinetics, seprable 3D convolutions yields better classification performance. Args: inputs: a 5-D tensor `[batch_size, depth, height, width, channels]`. num_outputs: integer, the number of output filters. kernel_size: a list of length 3 `[kernel_depth, kernel_height, kernel_width]` of the filters. Can be an int if all values are the same. stride: a list of length 3 `[stride_depth, stride_height, stride_width]`. Can be an int if all strides are the same. padding: one of `VALID` or `SAME`. activation_fn: activation function. normalizer_fn: normalization function to use instead of `biases`. normalizer_params: dictionary of normalization function parameters. weights_regularizer: Optional regularizer for the weights. separable: If `True`, use separable spatiotemporal convolutions. data_format: An optional string from: "NDHWC", "NCDHW". Defaults to "NDHWC". The data format of the input and output data. With the default format "NDHWC", the data is stored in the order of: [batch, in_depth, in_height, in_width, in_channels]. Alternatively, the format could be "NCDHW", the data storage order is: [batch, in_channels, in_depth, in_height, in_width]. scope: scope for `variable_scope`. Returns: A tensor representing the output of the (separable) conv3d operation. """ assert len(kernel_size) == 3 if separable and kernel_size[0] != 1: spatial_kernel_size = [1, kernel_size[1], kernel_size[2]] temporal_kernel_size = [kernel_size[0], 1, 1] if isinstance(stride, list) and len(stride) == 3: spatial_stride = [1, stride[1], stride[2]] temporal_stride = [stride[0], 1, 1] else: spatial_stride = [1, stride, stride] temporal_stride = [stride, 1, 1] net = layers.conv3d( inputs, num_outputs, spatial_kernel_size, stride=spatial_stride, padding=padding, activation_fn=activation_fn, normalizer_fn=normalizer_fn, normalizer_params=normalizer_params, weights_regularizer=weights_regularizer, data_format=data_format, scope=scope) net = layers.conv3d( net, num_outputs, temporal_kernel_size, stride=temporal_stride, padding=padding, scope=scope + '/temporal', activation_fn=activation_fn, normalizer_fn=None, data_format=data_format, weights_initializer=center_initializer()) return net else: return layers.conv3d( inputs, num_outputs, kernel_size, stride=stride, padding=padding, activation_fn=activation_fn, normalizer_fn=normalizer_fn, normalizer_params=normalizer_params, weights_regularizer=weights_regularizer, data_format=data_format, scope=scope) @add_arg_scope def inception_block_v1_3d(inputs, num_outputs_0_0a, num_outputs_1_0a, num_outputs_1_0b, num_outputs_2_0a, num_outputs_2_0b, num_outputs_3_0b, temporal_kernel_size=3, self_gating_fn=None, data_format='NDHWC', scope=''): """A 3D Inception v1 block. This allows use of separable 3D convolutions and self-gating, as described in: Saining Xie, Chen Sun, Jonathan Huang, Zhuowen Tu and Kevin Murphy, Rethinking Spatiotemporal Feature Learning For Video Understanding. https://arxiv.org/abs/1712.04851. Args: inputs: a 5-D tensor `[batch_size, depth, height, width, channels]`. num_outputs_0_0a: integer, the number of output filters for Branch 0, operation Conv2d_0a_1x1. num_outputs_1_0a: integer, the number of output filters for Branch 1, operation Conv2d_0a_1x1. num_outputs_1_0b: integer, the number of output filters for Branch 1, operation Conv2d_0b_3x3. num_outputs_2_0a: integer, the number of output filters for Branch 2, operation Conv2d_0a_1x1. num_outputs_2_0b: integer, the number of output filters for Branch 2, operation Conv2d_0b_3x3. num_outputs_3_0b: integer, the number of output filters for Branch 3, operation Conv2d_0b_1x1. temporal_kernel_size: integer, the size of the temporal convolutional filters in the conv3d_spatiotemporal blocks. self_gating_fn: function which optionally performs self-gating. Must have two arguments, `inputs` and `scope`, and return one output tensor the same size as `inputs`. If `None`, no self-gating is applied. data_format: An optional string from: "NDHWC", "NCDHW". Defaults to "NDHWC". The data format of the input and output data. With the default format "NDHWC", the data is stored in the order of: [batch, in_depth, in_height, in_width, in_channels]. Alternatively, the format could be "NCDHW", the data storage order is: [batch, in_channels, in_depth, in_height, in_width]. scope: scope for `variable_scope`. Returns: A 5-D tensor `[batch_size, depth, height, width, out_channels]`, where `out_channels = num_outputs_0_0a + num_outputs_1_0b + num_outputs_2_0b + num_outputs_3_0b`. """ use_gating = self_gating_fn is not None with tf.compat.v1.variable_scope(scope): with tf.compat.v1.variable_scope('Branch_0'): branch_0 = layers.conv3d( inputs, num_outputs_0_0a, [1, 1, 1], scope='Conv2d_0a_1x1') if use_gating: branch_0 = self_gating_fn(branch_0, scope='Conv2d_0a_1x1') with tf.compat.v1.variable_scope('Branch_1'): branch_1 = layers.conv3d( inputs, num_outputs_1_0a, [1, 1, 1], scope='Conv2d_0a_1x1') branch_1 = conv3d_spatiotemporal( branch_1, num_outputs_1_0b, [temporal_kernel_size, 3, 3], scope='Conv2d_0b_3x3') if use_gating: branch_1 = self_gating_fn(branch_1, scope='Conv2d_0b_3x3') with tf.compat.v1.variable_scope('Branch_2'): branch_2 = layers.conv3d( inputs, num_outputs_2_0a, [1, 1, 1], scope='Conv2d_0a_1x1') branch_2 = conv3d_spatiotemporal( branch_2, num_outputs_2_0b, [temporal_kernel_size, 3, 3], scope='Conv2d_0b_3x3') if use_gating: branch_2 = self_gating_fn(branch_2, scope='Conv2d_0b_3x3') with tf.compat.v1.variable_scope('Branch_3'): branch_3 = layers.max_pool3d(inputs, [3, 3, 3], scope='MaxPool_0a_3x3') branch_3 = layers.conv3d( branch_3, num_outputs_3_0b, [1, 1, 1], scope='Conv2d_0b_1x1') if use_gating: branch_3 = self_gating_fn(branch_3, scope='Conv2d_0b_1x1') index_c = data_format.index('C') assert 1 <= index_c <= 4, 'Cannot identify channel dimension.' output = tf.concat([branch_0, branch_1, branch_2, branch_3], index_c) return output def reduced_kernel_size_3d(input_tensor, kernel_size): """Define kernel size which is automatically reduced for small input. If the shape of the input images is unknown at graph construction time this function assumes that the input images are large enough. Args: input_tensor: input tensor of size [batch_size, time, height, width, channels]. kernel_size: desired kernel size of length 3, corresponding to time, height and width. Returns: a tensor with the kernel size. """ assert len(kernel_size) == 3 shape = input_tensor.get_shape().as_list() assert len(shape) == 5 if None in shape[1:4]: kernel_size_out = kernel_size else: kernel_size_out = [min(shape[1], kernel_size[0]), min(shape[2], kernel_size[1]), min(shape[3], kernel_size[2])] return kernel_size_out