# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== from __future__ import absolute_import from __future__ import division from __future__ import print_function import os import sys from tempfile import mkdtemp from tempfile import mkstemp import numpy as np import tensorflow as tf import cifar10_main tf.logging.set_verbosity(tf.logging.ERROR) class BaseTest(tf.test.TestCase): def test_dataset_input_fn(self): fake_data = bytearray() fake_data.append(7) for i in xrange(3): for j in xrange(1024): fake_data.append(i) _, filename = mkstemp(dir=self.get_temp_dir()) file = open(filename, 'wb') file.write(fake_data) file.close() fake_dataset = cifar10_main.record_dataset(filename) fake_dataset = fake_dataset.map(cifar10_main.dataset_parser) image, label = fake_dataset.make_one_shot_iterator().get_next() self.assertEqual(label.get_shape().as_list(), [10]) self.assertEqual(image.get_shape().as_list(), [32, 32, 3]) with self.test_session() as sess: image, label = sess.run([image, label]) self.assertAllEqual(label, np.array([int(i == 7) for i in range(10)])) for row in image: for pixel in row: self.assertAllEqual(pixel, np.array([0, 1, 2])) def input_fn(self): features = tf.random_uniform([FLAGS.batch_size, 32, 32, 3]) labels = tf.random_uniform( [FLAGS.batch_size], maxval=9, dtype=tf.int32) return features, tf.one_hot(labels, 10) def cifar10_model_fn_helper(self, mode): features, labels = self.input_fn() spec = cifar10_main.cifar10_model_fn(features, labels, mode) predictions = spec.predictions self.assertAllEqual(predictions['probabilities'].shape, (FLAGS.batch_size, 10)) self.assertEqual(predictions['probabilities'].dtype, tf.float32) self.assertAllEqual(predictions['classes'].shape, (FLAGS.batch_size,)) self.assertEqual(predictions['classes'].dtype, tf.int64) if mode != tf.estimator.ModeKeys.PREDICT: loss = spec.loss self.assertAllEqual(loss.shape, ()) self.assertEqual(loss.dtype, tf.float32) if mode == tf.estimator.ModeKeys.EVAL: eval_metric_ops = spec.eval_metric_ops self.assertAllEqual(eval_metric_ops['accuracy'][0].shape, ()) self.assertAllEqual(eval_metric_ops['accuracy'][1].shape, ()) self.assertEqual(eval_metric_ops['accuracy'][0].dtype, tf.float32) self.assertEqual(eval_metric_ops['accuracy'][1].dtype, tf.float32) def test_cifar10_model_fn_train_mode(self): self.cifar10_model_fn_helper(tf.estimator.ModeKeys.TRAIN) def test_cifar10_model_fn_eval_mode(self): self.cifar10_model_fn_helper(tf.estimator.ModeKeys.EVAL) def test_cifar10_model_fn_predict_mode(self): self.cifar10_model_fn_helper(tf.estimator.ModeKeys.PREDICT) if __name__ == '__main__': FLAGS = cifar10_main.parser.parse_args() cifar10_main.FLAGS = FLAGS tf.test.main()