# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np import tensorflow as tf import mnist tf.logging.set_verbosity(tf.logging.ERROR) class BaseTest(tf.test.TestCase): def input_fn(self): features = tf.random_uniform([55000, 784]) labels = tf.random_uniform([55000], maxval=9, dtype=tf.int32) return features, tf.one_hot(labels, 10) def mnist_model_fn_helper(self, mode): features, labels = self.input_fn() image_count = features.shape[0] spec = mnist.mnist_model_fn(features, labels, mode) predictions = spec.predictions self.assertAllEqual(predictions['probabilities'].shape, (image_count, 10)) self.assertEqual(predictions['probabilities'].dtype, tf.float32) self.assertAllEqual(predictions['classes'].shape, (image_count,)) self.assertEqual(predictions['classes'].dtype, tf.int64) if mode != tf.estimator.ModeKeys.PREDICT: loss = spec.loss self.assertAllEqual(loss.shape, ()) self.assertEqual(loss.dtype, tf.float32) if mode == tf.estimator.ModeKeys.EVAL: eval_metric_ops = spec.eval_metric_ops self.assertAllEqual(eval_metric_ops['accuracy'][0].shape, ()) self.assertAllEqual(eval_metric_ops['accuracy'][1].shape, ()) self.assertEqual(eval_metric_ops['accuracy'][0].dtype, tf.float32) self.assertEqual(eval_metric_ops['accuracy'][1].dtype, tf.float32) def test_mnist_model_fn_train_mode(self): self.mnist_model_fn_helper(tf.estimator.ModeKeys.TRAIN) def test_mnist_model_fn_eval_mode(self): self.mnist_model_fn_helper(tf.estimator.ModeKeys.EVAL) def test_mnist_model_fn_predict_mode(self): self.mnist_model_fn_helper(tf.estimator.ModeKeys.PREDICT) if __name__ == '__main__': tf.test.main()