# These configs are the defaults we used for both the pouring and pose # experiments. # Train on TPU? use_tpu: false # Default is to run without TPU locally. tpu: num_shards: 1 iterations: 100 # SGD / general learning hyperparameters. learning: max_step: 1000000 learning_rate: 0.001 decay_steps: 10000 decay_factor: 1.00 l2_reg_weight: 0.000001 optimizer: 'adam' # Default metric learning loss hyperparameters. triplet_semihard: embedding_l2: true # Suggestion from Hyun Oh Song's slides. margin: .2 # Default value for Facenet. npairs: embedding_l2: false # Suggestion from Hyun Oh Song's slides. clustering_loss: embedding_l2: true # Suggestion from Hyun Oh Song's slides. margin: 1.0 # Default in deep_metric_learning. lifted_struct: embedding_l2: false # Suggestion from Hyun Oh Song's slides. margin: 1.0 contrastive: embedding_l2: true # Suggestion from Hyun Oh Song's slides. margin: 1.0 # Which method to use to train the embedding. # Options are "mvtcn", "svtcn". training_strategy: 'mvtcn' # Which embedder architecture to use. # Options are 'inception_conv_ss_fc' (used in pouring / pose experiments), # 'resnet'. embedder_strategy: 'inception_conv_ss_fc' # Size of the TCN embedding. embedding_size: 32 # Default hyperparameters for the different embedder architectures. inception_conv_ss_fc: pretrained_checkpoint: 'pretrained_checkpoints/inception/inception_v3.ckpt' pretrained_layer: 'Mixed_5d' additional_conv_sizes: [512, 512] fc_hidden_sizes: [2048] finetune: false dropout: keep_pretrained: 1.0 keep_conv: 1.0 keep_fc: 1.0 resnet: pretrained_checkpoint: 'pretrained_checkpoints/resnet/resnet_v2_50.ckpt' pretrained_layer: 4 finetune: false adaptation_blocks: '512_3-512_3' emb_connection: 'conv' fc_hidden_sizes: 'None' dropout: keep_pretrained: 1.0 # Loss hyperparameters. mvtcn: # Size of the window in timesteps to get random anchor-positive pairs for # training. window: 580 # 29fps * 20 seconds. svtcn: pos_radius: 6 # 0.2 seconds * 29fps ~ 6 timesteps. neg_radius: 12 # 2.0 * pos_radius. # Data configs. data: height: 299 width: 299 preprocessing: # Strategy to use when cropping images at inference time. # See preprocessing.py for options. eval_cropping: 'crop_center' # Training scale, color augmentation hyparameters. augmentation: # See preprocessing.py for a discussion of how to use these parameters. minscale: 1.0 maxscale: 1.0 proportion_scaled_up: 0.5 color: true fast_mode: true num_parallel_calls: 12 sequence_prefetch_size: 12 batch_prefetch_size: 12 batch_size: 36 eval_batch_size: 36 embed_batch_size: 128 val: recall_at_k_list: [1] num_eval_samples: 1000 eval_interval_secs: 300 logging: summary: image_summaries: false save_summaries_steps: 100 flush_secs: 600 checkpoint: num_to_keep: 0 # Keep all checkpoints. save_checkpoints_steps: 1000 secs: 1800