# Copyright 2018 The TensorFlow Authors All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """ Offline data generation for the KITTI dataset.""" import os from absl import app from absl import flags from absl import logging import numpy as np import cv2 import os, glob import alignment from alignment import compute_overlap from alignment import align SEQ_LENGTH = 3 WIDTH = 416 HEIGHT = 128 STEPSIZE = 1 INPUT_DIR = '/usr/local/google/home/anelia/struct2depth/KITTI_FULL/kitti-raw-uncompressed' OUTPUT_DIR = '/usr/local/google/home/anelia/struct2depth/KITTI_procesed/' def get_line(file, start): file = open(file, 'r') lines = file.readlines() lines = [line.rstrip() for line in lines] ret = None for line in lines: nline = line.split(': ') if nline[0]==start: ret = nline[1].split(' ') ret = np.array([float(r) for r in ret], dtype=float) ret = ret.reshape((3,4))[0:3, 0:3] break file.close() return ret def crop(img, segimg, fx, fy, cx, cy): # Perform center cropping, preserving 50% vertically. middle_perc = 0.50 left = 1-middle_perc half = left/2 a = img[int(img.shape[0]*(half)):int(img.shape[0]*(1-half)), :] aseg = segimg[int(segimg.shape[0]*(half)):int(segimg.shape[0]*(1-half)), :] cy /= (1/middle_perc) # Resize to match target height while preserving aspect ratio. wdt = int((128*a.shape[1]/a.shape[0])) x_scaling = float(wdt)/a.shape[1] y_scaling = 128.0/a.shape[0] b = cv2.resize(a, (wdt, 128)) bseg = cv2.resize(aseg, (wdt, 128)) # Adjust intrinsics. fx*=x_scaling fy*=y_scaling cx*=x_scaling cy*=y_scaling # Perform center cropping horizontally. remain = b.shape[1] - 416 cx /= (b.shape[1]/416) c = b[:, int(remain/2):b.shape[1]-int(remain/2)] cseg = bseg[:, int(remain/2):b.shape[1]-int(remain/2)] return c, cseg, fx, fy, cx, cy def run_all(): ct = 0 if not OUTPUT_DIR.endswith('/'): OUTPUT_DIR = OUTPUT_DIR + '/' for d in glob.glob(INPUT_DIR + '/*/'): date = d.split('/')[-2] file_calibration = d + 'calib_cam_to_cam.txt' calib_raw = [get_line(file_calibration, 'P_rect_02'), get_line(file_calibration, 'P_rect_03')] for d2 in glob.glob(d + '*/'): seqname = d2.split('/')[-2] print('Processing sequence', seqname) for subfolder in ['image_02/data', 'image_03/data']: ct = 1 seqname = d2.split('/')[-2] + subfolder.replace('image', '').replace('/data', '') if not os.path.exists(OUTPUT_DIR + seqname): os.mkdir(OUTPUT_DIR + seqname) calib_camera = calib_raw[0] if subfolder=='image_02/data' else calib_raw[1] folder = d2 + subfolder files = glob.glob(folder + '/*.png') files = [file for file in files if not 'disp' in file and not 'flip' in file and not 'seg' in file] files = sorted(files) for i in range(SEQ_LENGTH, len(files)+1, STEPSIZE): imgnum = str(ct).zfill(10) if os.path.exists(OUTPUT_DIR + seqname + '/' + imgnum + '.png'): ct+=1 continue big_img = np.zeros(shape=(HEIGHT, WIDTH*SEQ_LENGTH, 3)) wct = 0 for j in range(i-SEQ_LENGTH, i): # Collect frames for this sample. img = cv2.imread(files[j]) ORIGINAL_HEIGHT, ORIGINAL_WIDTH, _ = img.shape zoom_x = WIDTH/ORIGINAL_WIDTH zoom_y = HEIGHT/ORIGINAL_HEIGHT # Adjust intrinsics. calib_current = calib_camera.copy() calib_current[0, 0] *= zoom_x calib_current[0, 2] *= zoom_x calib_current[1, 1] *= zoom_y calib_current[1, 2] *= zoom_y calib_representation = ','.join([str(c) for c in calib_current.flatten()]) img = cv2.resize(img, (WIDTH, HEIGHT)) big_img[:,wct*WIDTH:(wct+1)*WIDTH] = img wct+=1 cv2.imwrite(OUTPUT_DIR + seqname + '/' + imgnum + '.png', big_img) f = open(OUTPUT_DIR + seqname + '/' + imgnum + '_cam.txt', 'w') f.write(calib_representation) f.close() ct+=1 def main(_): run_all() if __name__ == '__main__': app.run(main)