# TF Vision Model Garden ## Introduction TF Vision model garden provides a large collection of baselines and checkpoints for image classification, object detection, and instance segmentation. ## Image Classification ### Common Settings and Notes * We provide ImageNet checkpoints for [ResNet](https://arxiv.org/abs/1512.03385) models. * Training details: * All models are trained from scratch for 90 epochs with batch size 4096 and 1.6 initial stepwise decay learning rate. * Unless noted, all models are trained with l2 weight regularization and ReLU activation. ### ImageNet Baselines | model | resolution | epochs | FLOPs (B) | params (M) | Top-1 | Top-5 | download | | ------------ |:-------------:| ---------:|-----------:|--------:|--------:|---------:|---------:| | ResNet-50 | 224x224 | 90 | 4.1 | 25.6 | 76.1 | 92.9 | config | ## Object Detection and Instance Segmentation ### Common Settings and Notes * We provide models based on two detection frameworks, [RetinaNet](https://arxiv.org/abs/1708.02002) or [Mask R-CNN](https://arxiv.org/abs/1703.06870), and two backbones, [ResNet-FPN](https://arxiv.org/abs/1612.03144) or [SpineNet](https://arxiv.org/abs/1912.05027). * Models are all trained on COCO train2017 and evaluated on COCO val2017. * Training details: * Models finetuned from ImageNet pretrained checkpoints adopt the 12 or 36 epochs schedule. Models trained from scratch adopt the 350 epochs schedule. * The default training data augmentation implements horizontal flipping and scale jittering with a random scale between [0.5, 2.0]. * Unless noted, all models are trained with l2 weight regularization and ReLU activation. * We use batch size 256 and stepwise learning rate that decays at the last 30 and 10 epoch. * We use square image as input by resizing the long side of an image to the target size then padding the short side with zeros. ### COCO Object Detection Baselines #### RetinaNet (ImageNet pretrained) | backbone | resolution | epochs | FLOPs (B) | params (M) | box AP | download | | ------------ |:-------------:| ---------:|-----------:|--------:|--------:|-----------:| | R50-FPN | 640x640 | 12 | 97.0 | 34.0 | 34.3 | config| | R50-FPN | 640x640 | 36 | 97.0 | 34.0 | 37.3 | config| #### RetinaNet (Trained from scratch) | backbone | resolution | epochs | FLOPs (B) | params (M) | box AP | download | | ------------ |:-------------:| ---------:|-----------:|--------:|---------:|-----------:| | SpineNet-49 | 640x640 | 350 | 85.4| 28.5 | 42.4| config| | SpineNet-96 | 1024x1024 | 350 | 265.4 | 43.0 | 46.0 | config | | SpineNet-143 | 1280x1280 | 350 | 524.0 | 67.0 | 46.8 |config| ### Instance Segmentation Baselines #### Mask R-CNN (ImageNet pretrained) #### Mask R-CNN (Trained from scratch) | backbone | resolution | epochs | FLOPs (B) | params (M) | box AP | mask AP | download | | ------------ |:-------------:| ---------:|-----------:|--------:|--------:|-----------:|-----------:| | SpineNet-49 | 640x640 | 350 | 215.7 | 40.8 | 42.6 | 37.9 | config |