# Lint as: python3 # Copyright 2020 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for official.nlp.tasks.sentence_prediction.""" import functools import os from absl.testing import parameterized import tensorflow as tf from official.nlp.bert import configs from official.nlp.bert import export_tfhub from official.nlp.configs import bert from official.nlp.configs import encoders from official.nlp.data import dual_encoder_dataloader from official.nlp.tasks import dual_encoder from official.nlp.tasks import masked_lm class DualEncoderTaskTest(tf.test.TestCase, parameterized.TestCase): def setUp(self): super(DualEncoderTaskTest, self).setUp() self._train_data_config = ( dual_encoder_dataloader.DualEncoderDataConfig( input_path="dummy", seq_length=32)) def get_model_config(self): return dual_encoder.ModelConfig( max_sequence_length=32, encoder=encoders.EncoderConfig( bert=encoders.BertEncoderConfig(vocab_size=30522, num_layers=1))) def _run_task(self, config): task = dual_encoder.DualEncoderTask(config) model = task.build_model() metrics = task.build_metrics() strategy = tf.distribute.get_strategy() dataset = strategy.experimental_distribute_datasets_from_function( functools.partial(task.build_inputs, config.train_data)) dataset.batch(10) iterator = iter(dataset) optimizer = tf.keras.optimizers.SGD(lr=0.1) task.train_step(next(iterator), model, optimizer, metrics=metrics) task.validation_step(next(iterator), model, metrics=metrics) def test_task(self): config = dual_encoder.DualEncoderConfig( init_checkpoint=self.get_temp_dir(), model=self.get_model_config(), train_data=self._train_data_config) task = dual_encoder.DualEncoderTask(config) model = task.build_model() metrics = task.build_metrics() dataset = task.build_inputs(config.train_data) iterator = iter(dataset) optimizer = tf.keras.optimizers.SGD(lr=0.1) task.train_step(next(iterator), model, optimizer, metrics=metrics) task.validation_step(next(iterator), model, metrics=metrics) # Saves a checkpoint. pretrain_cfg = bert.PretrainerConfig( encoder=encoders.EncoderConfig( bert=encoders.BertEncoderConfig(vocab_size=30522, num_layers=1))) pretrain_model = masked_lm.MaskedLMTask(None).build_model(pretrain_cfg) ckpt = tf.train.Checkpoint( model=pretrain_model, **pretrain_model.checkpoint_items) ckpt.save(config.init_checkpoint) task.initialize(model) def _export_bert_tfhub(self): bert_config = configs.BertConfig( vocab_size=30522, hidden_size=16, intermediate_size=32, max_position_embeddings=128, num_attention_heads=2, num_hidden_layers=1) _, encoder = export_tfhub.create_bert_model(bert_config) model_checkpoint_dir = os.path.join(self.get_temp_dir(), "checkpoint") checkpoint = tf.train.Checkpoint(model=encoder) checkpoint.save(os.path.join(model_checkpoint_dir, "test")) model_checkpoint_path = tf.train.latest_checkpoint(model_checkpoint_dir) vocab_file = os.path.join(self.get_temp_dir(), "uncased_vocab.txt") with tf.io.gfile.GFile(vocab_file, "w") as f: f.write("dummy content") hub_destination = os.path.join(self.get_temp_dir(), "hub") export_tfhub.export_bert_tfhub(bert_config, model_checkpoint_path, hub_destination, vocab_file) return hub_destination def test_task_with_hub(self): hub_module_url = self._export_bert_tfhub() config = dual_encoder.DualEncoderConfig( hub_module_url=hub_module_url, model=self.get_model_config(), train_data=self._train_data_config) self._run_task(config) if __name__ == "__main__": tf.test.main()