# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== from __future__ import absolute_import from __future__ import division from __future__ import print_function from tempfile import mkstemp import numpy as np import tensorflow as tf import cifar10_main tf.logging.set_verbosity(tf.logging.ERROR) _BATCH_SIZE = 128 _HEIGHT = 32 _WIDTH = 32 _NUM_CHANNELS = 3 class BaseTest(tf.test.TestCase): def test_dataset_input_fn(self): fake_data = bytearray() fake_data.append(7) for i in range(_NUM_CHANNELS): for _ in range(_HEIGHT * _WIDTH): fake_data.append(i) _, filename = mkstemp(dir=self.get_temp_dir()) data_file = open(filename, 'wb') data_file.write(fake_data) data_file.close() fake_dataset = tf.data.FixedLengthRecordDataset( filename, cifar10_main._RECORD_BYTES) fake_dataset = fake_dataset.map( lambda val: cifar10_main.parse_record(val, False)) image, label = fake_dataset.make_one_shot_iterator().get_next() self.assertAllEqual(label.shape, (10,)) self.assertAllEqual(image.shape, (_HEIGHT, _WIDTH, _NUM_CHANNELS)) with self.test_session() as sess: image, label = sess.run([image, label]) self.assertAllEqual(label, np.array([int(i == 7) for i in range(10)])) for row in image: for pixel in row: self.assertAllClose(pixel, np.array([-1.225, 0., 1.225]), rtol=1e-3) def input_fn(self): features = tf.random_uniform([_BATCH_SIZE, _HEIGHT, _WIDTH, _NUM_CHANNELS]) labels = tf.random_uniform( [_BATCH_SIZE], maxval=9, dtype=tf.int32) return features, tf.one_hot(labels, 10) def cifar10_model_fn_helper(self, mode): features, labels = self.input_fn() spec = cifar10_main.cifar10_model_fn( features, labels, mode, { 'resnet_size': 32, 'data_format': 'channels_last', 'batch_size': _BATCH_SIZE, }) predictions = spec.predictions self.assertAllEqual(predictions['probabilities'].shape, (_BATCH_SIZE, 10)) self.assertEqual(predictions['probabilities'].dtype, tf.float32) self.assertAllEqual(predictions['classes'].shape, (_BATCH_SIZE,)) self.assertEqual(predictions['classes'].dtype, tf.int64) if mode != tf.estimator.ModeKeys.PREDICT: loss = spec.loss self.assertAllEqual(loss.shape, ()) self.assertEqual(loss.dtype, tf.float32) if mode == tf.estimator.ModeKeys.EVAL: eval_metric_ops = spec.eval_metric_ops self.assertAllEqual(eval_metric_ops['accuracy'][0].shape, ()) self.assertAllEqual(eval_metric_ops['accuracy'][1].shape, ()) self.assertEqual(eval_metric_ops['accuracy'][0].dtype, tf.float32) self.assertEqual(eval_metric_ops['accuracy'][1].dtype, tf.float32) def test_cifar10_model_fn_train_mode(self): self.cifar10_model_fn_helper(tf.estimator.ModeKeys.TRAIN) def test_cifar10_model_fn_eval_mode(self): self.cifar10_model_fn_helper(tf.estimator.ModeKeys.EVAL) def test_cifar10_model_fn_predict_mode(self): self.cifar10_model_fn_helper(tf.estimator.ModeKeys.PREDICT) def test_cifar10model_shape(self): batch_size = 135 num_classes = 246 model = cifar10_main.Cifar10Model( 32, data_format='channels_last', num_classes=num_classes) fake_input = tf.constant( 0.0, shape=[batch_size, _HEIGHT, _WIDTH, _NUM_CHANNELS]) output = model(fake_input, training=True) self.assertAllEqual(output.shape, (batch_size, num_classes)) if __name__ == '__main__': tf.test.main()