# BERT (Bidirectional Encoder Representations from Transformers) The academic paper which describes BERT in detail and provides full results on a number of tasks can be found here: https://arxiv.org/abs/1810.04805. This repository contains TensorFlow 2.x implementation for BERT. ## Contents * [Contents](#contents) * [Pre-trained Models](#pre-trained-models) * [Restoring from Checkpoints](#restoring-from-checkpoints) * [Set Up](#set-up) * [Process Datasets](#process-datasets) * [Fine-tuning with BERT](#fine-tuning-with-bert) * [Cloud GPUs and TPUs](#cloud-gpus-and-tpus) * [Sentence and Sentence-pair Classification Tasks](#sentence-and-sentence-pair-classification-tasks) * [SQuAD 1.1](#squad-1.1) ## Pre-trained Models Our current released checkpoints are exactly the same as TF 1.x official BERT repository, thus inside `BertConfig`, there is `backward_compatible=True`. We are going to release new pre-trained checkpoints soon. ### Access to Pretrained Checkpoints We provide checkpoints that are converted from [google-research/bert](https://github.com/google-research/bert), in order to keep consistent with BERT paper. **Note: We have switched BERT implementation to use Keras functional-style networks in [nlp/modeling](../modeling). The new checkpoints are:** * **[`BERT-Large, Uncased (Whole Word Masking)`](https://storage.googleapis.com/cloud-tpu-checkpoints/bert/keras_bert/wwm_uncased_L-24_H-1024_A-16.tar.gz)**: 24-layer, 1024-hidden, 16-heads, 340M parameters * **[`BERT-Large, Cased (Whole Word Masking)`](https://storage.googleapis.com/cloud-tpu-checkpoints/bert/keras_bert/wwm_cased_L-24_H-1024_A-16.tar.gz)**: 24-layer, 1024-hidden, 16-heads, 340M parameters * **[`BERT-Base, Uncased`](https://storage.googleapis.com/cloud-tpu-checkpoints/bert/keras_bert/uncased_L-12_H-768_A-12.tar.gz)**: 12-layer, 768-hidden, 12-heads, 110M parameters * **[`BERT-Large, Uncased`](https://storage.googleapis.com/cloud-tpu-checkpoints/bert/keras_bert/uncased_L-24_H-1024_A-16.tar.gz)**: 24-layer, 1024-hidden, 16-heads, 340M parameters * **[`BERT-Base, Cased`](https://storage.googleapis.com/cloud-tpu-checkpoints/bert/keras_bert/cased_L-12_H-768_A-12.tar.gz)**: 12-layer, 768-hidden, 12-heads , 110M parameters * **[`BERT-Large, Cased`](https://storage.googleapis.com/cloud-tpu-checkpoints/bert/keras_bert/cased_L-24_H-1024_A-16.tar.gz)**: 24-layer, 1024-hidden, 16-heads, 340M parameters Here are the stable model checkpoints work with [v2.0 release](https://github.com/tensorflow/models/releases/tag/v2.0). **Note: these checkpoints are not compatible with the current master examples.** * **[`BERT-Large, Uncased (Whole Word Masking)`](https://storage.googleapis.com/cloud-tpu-checkpoints/bert/tf_20/wwm_uncased_L-24_H-1024_A-16.tar.gz)**: 24-layer, 1024-hidden, 16-heads, 340M parameters * **[`BERT-Large, Cased (Whole Word Masking)`](https://storage.googleapis.com/cloud-tpu-checkpoints/bert/tf_20/wwm_cased_L-24_H-1024_A-16.tar.gz)**: 24-layer, 1024-hidden, 16-heads, 340M parameters * **[`BERT-Base, Uncased`](https://storage.googleapis.com/cloud-tpu-checkpoints/bert/tf_20/uncased_L-12_H-768_A-12.tar.gz)**: 12-layer, 768-hidden, 12-heads, 110M parameters * **[`BERT-Large, Uncased`](https://storage.googleapis.com/cloud-tpu-checkpoints/bert/tf_20/uncased_L-24_H-1024_A-16.tar.gz)**: 24-layer, 1024-hidden, 16-heads, 340M parameters * **[`BERT-Base, Cased`](https://storage.googleapis.com/cloud-tpu-checkpoints/bert/tf_20/cased_L-12_H-768_A-12.tar.gz)**: 12-layer, 768-hidden, 12-heads , 110M parameters * **[`BERT-Large, Cased`](https://storage.googleapis.com/cloud-tpu-checkpoints/bert/tf_20/cased_L-24_H-1024_A-16.tar.gz)**: 24-layer, 1024-hidden, 16-heads, 340M parameters We recommend to host checkpoints on Google Cloud storage buckets when you use Cloud GPU/TPU. ### Restoring from Checkpoints `tf.train.Checkpoint` is used to manage model checkpoints in TF 2. To restore weights from provided pre-trained checkpoints, you can use the following code: ```python init_checkpoint='the pretrained model checkpoint path.' model=tf.keras.Model() # Bert pre-trained model as feature extractor. checkpoint = tf.train.Checkpoint(model=model) checkpoint.restore(init_checkpoint) ``` Checkpoints featuring native serialized Keras models (i.e. model.load()/load_weights()) will be available soon. ## Set Up ```shell export PYTHONPATH="$PYTHONPATH:/path/to/models" ``` Install `tf-nightly` to get latest updates: ```shell pip install tf-nightly-gpu ``` With TPU, GPU support is not necessary. First, you need to create a `tf-nightly` TPU with [ctpu tool](https://github.com/tensorflow/tpu/tree/master/tools/ctpu): ```shell ctpu up -name --tf-version=”nightly” ``` Second, you need to install TF 2 `tf-nightly` on your VM: ```shell pip install tf-nightly ``` Warning: More details TPU-specific set-up instructions and tutorial should come along with official TF 2.x release for TPU. Note that this repo is not officially supported by Google Cloud TPU team yet until TF 2.1 released. ## Process Datasets ### Pre-training There is no change to generate pre-training data. Please use the script [`../data/create_pretraining_data.py`](../data/create_pretraining_data.py) which is essentially branched from [BERT research repo](https://github.com/google-research/bert) to get processed pre-training data and it adapts to TF2 symbols and python3 compatibility. ### Fine-tuning To prepare the fine-tuning data for final model training, use the [`../data/create_finetuning_data.py`](../data/create_finetuning_data.py) script. Resulting datasets in `tf_record` format and training meta data should be later passed to training or evaluation scripts. The task-specific arguments are described in following sections: * GLUE Users can download the [GLUE data](https://gluebenchmark.com/tasks) by running [this script](https://gist.github.com/W4ngatang/60c2bdb54d156a41194446737ce03e2e) and unpack it to some directory `$GLUE_DIR`. ```shell export GLUE_DIR=~/glue export BERT_BASE_DIR=gs://cloud-tpu-checkpoints/bert/keras_bert/uncased_L-24_H-1024_A-16 export TASK_NAME=MNLI export OUTPUT_DIR=gs://some_bucket/datasets python ../data/create_finetuning_data.py \ --input_data_dir=${GLUE_DIR}/${TASK_NAME}/ \ --vocab_file=${BERT_BASE_DIR}/vocab.txt \ --train_data_output_path=${OUTPUT_DIR}/${TASK_NAME}_train.tf_record \ --eval_data_output_path=${OUTPUT_DIR}/${TASK_NAME}_eval.tf_record \ --meta_data_file_path=${OUTPUT_DIR}/${TASK_NAME}_meta_data \ --fine_tuning_task_type=classification --max_seq_length=128 \ --classification_task_name=${TASK_NAME} ``` * SQUAD The [SQuAD website](https://rajpurkar.github.io/SQuAD-explorer/) contains detailed information about the SQuAD datasets and evaluation. The necessary files can be found here: * [train-v1.1.json](https://rajpurkar.github.io/SQuAD-explorer/dataset/train-v1.1.json) * [dev-v1.1.json](https://rajpurkar.github.io/SQuAD-explorer/dataset/dev-v1.1.json) * [evaluate-v1.1.py](https://github.com/allenai/bi-att-flow/blob/master/squad/evaluate-v1.1.py) * [train-v2.0.json](https://rajpurkar.github.io/SQuAD-explorer/dataset/train-v2.0.json) * [dev-v2.0.json](https://rajpurkar.github.io/SQuAD-explorer/dataset/dev-v2.0.json) * [evaluate-v2.0.py](https://worksheets.codalab.org/rest/bundles/0x6b567e1cf2e041ec80d7098f031c5c9e/contents/blob/) ```shell export SQUAD_DIR=~/squad export SQUAD_VERSION=v1.1 export BERT_BASE_DIR=gs://cloud-tpu-checkpoints/bert/keras_bert/uncased_L-24_H-1024_A-16 export OUTPUT_DIR=gs://some_bucket/datasets python ../data/create_finetuning_data.py \ --squad_data_file=${SQUAD_DIR}/train-${SQUAD_VERSION}.json \ --vocab_file=${BERT_BASE_DIR}/vocab.txt \ --train_data_output_path=${OUTPUT_DIR}/squad_${SQUAD_VERSION}_train.tf_record \ --meta_data_file_path=${OUTPUT_DIR}/squad_${SQUAD_VERSION}_meta_data \ --fine_tuning_task_type=squad --max_seq_length=384 ``` ## Fine-tuning with BERT ### Cloud GPUs and TPUs * Cloud Storage The unzipped pre-trained model files can also be found in the Google Cloud Storage folder `gs://cloud-tpu-checkpoints/bert/keras_bert`. For example: ```shell export BERT_BASE_DIR=gs://cloud-tpu-checkpoints/bert/keras_bert/uncased_L-24_H-1024_A-16 export MODEL_DIR=gs://some_bucket/my_output_dir ``` Currently, users are able to access to `tf-nightly` TPUs and the following TPU script should run with `tf-nightly`. * GPU -> TPU Just add the following flags to `run_classifier.py` or `run_squad.py`: ```shell --distribution_strategy=tpu --tpu=grpc://${TPU_IP_ADDRESS}:8470 ``` ### Sentence and Sentence-pair Classification Tasks This example code fine-tunes `BERT-Large` on the Microsoft Research Paraphrase Corpus (MRPC) corpus, which only contains 3,600 examples and can fine-tune in a few minutes on most GPUs. We use the `BERT-Large` (uncased_L-24_H-1024_A-16) as an example throughout the workflow. For GPU memory of 16GB or smaller, you may try to use `BERT-Base` (uncased_L-12_H-768_A-12). ```shell export BERT_BASE_DIR=gs://cloud-tpu-checkpoints/bert/keras_bert/uncased_L-24_H-1024_A-16 export MODEL_DIR=gs://some_bucket/my_output_dir export GLUE_DIR=gs://some_bucket/datasets export TASK=MRPC python run_classifier.py \ --mode='train_and_eval' \ --input_meta_data_path=${GLUE_DIR}/${TASK}_meta_data \ --train_data_path=${GLUE_DIR}/${TASK}_train.tf_record \ --eval_data_path=${GLUE_DIR}/${TASK}_eval.tf_record \ --bert_config_file=${BERT_BASE_DIR}/bert_config.json \ --init_checkpoint=${BERT_BASE_DIR}/bert_model.ckpt \ --train_batch_size=4 \ --eval_batch_size=4 \ --steps_per_loop=1 \ --learning_rate=2e-5 \ --num_train_epochs=3 \ --model_dir=${MODEL_DIR} \ --distribution_strategy=mirrored ``` To use TPU, you only need to switch distribution strategy type to `tpu` with TPU information and use remote storage for model checkpoints. ```shell export BERT_BASE_DIR=gs://cloud-tpu-checkpoints/bert/keras_bert/uncased_L-24_H-1024_A-16 export TPU_IP_ADDRESS='???' export MODEL_DIR=gs://some_bucket/my_output_dir export GLUE_DIR=gs://some_bucket/datasets python run_classifier.py \ --mode='train_and_eval' \ --input_meta_data_path=${GLUE_DIR}/${TASK}_meta_data \ --train_data_path=${GLUE_DIR}/${TASK}_train.tf_record \ --eval_data_path=${GLUE_DIR}/${TASK}_eval.tf_record \ --bert_config_file=$BERT_BASE_DIR/bert_config.json \ --init_checkpoint=$BERT_BASE_DIR/bert_model.ckpt \ --train_batch_size=32 \ --eval_batch_size=32 \ --learning_rate=2e-5 \ --num_train_epochs=3 \ --model_dir=${MODEL_DIR} \ --distribution_strategy=tpu \ --tpu=grpc://${TPU_IP_ADDRESS}:8470 ``` ### SQuAD 1.1 The Stanford Question Answering Dataset (SQuAD) is a popular question answering benchmark dataset. See more in [SQuAD website](https://rajpurkar.github.io/SQuAD-explorer/). We use the `BERT-Large` (uncased_L-24_H-1024_A-16) as an example throughout the workflow. For GPU memory of 16GB or smaller, you may try to use `BERT-Base` (uncased_L-12_H-768_A-12). ```shell export BERT_BASE_DIR=gs://cloud-tpu-checkpoints/bert/keras_bert/uncased_L-24_H-1024_A-16 export SQUAD_DIR=gs://some_bucket/datasets export MODEL_DIR=gs://some_bucket/my_output_dir export SQUAD_VERSION=v1.1 python run_squad.py \ --input_meta_data_path=${SQUAD_DIR}/squad_${SQUAD_VERSION}_meta_data \ --train_data_path=${SQUAD_DIR}/squad_${SQUAD_VERSION}_train.tf_record \ --predict_file=${SQUAD_DIR}/dev-v1.1.json \ --vocab_file=${BERT_BASE_DIR}/vocab.txt \ --bert_config_file=$BERT_BASE_DIR/bert_config.json \ --init_checkpoint=$BERT_BASE_DIR/bert_model.ckpt \ --train_batch_size=4 \ --predict_batch_size=4 \ --learning_rate=8e-5 \ --num_train_epochs=2 \ --model_dir=${MODEL_DIR} \ --distribution_strategy=mirrored ``` To use TPU, you need switch distribution strategy type to `tpu` with TPU information. ```shell export BERT_BASE_DIR=gs://cloud-tpu-checkpoints/bert/keras_bert/uncased_L-24_H-1024_A-16 export TPU_IP_ADDRESS='???' export MODEL_DIR=gs://some_bucket/my_output_dir export SQUAD_DIR=gs://some_bucket/datasets export SQUAD_VERSION=v1.1 python run_squad.py \ --input_meta_data_path=${SQUAD_DIR}/squad_${SQUAD_VERSION}_meta_data \ --train_data_path=${SQUAD_DIR}/squad_${SQUAD_VERSION}_train.tf_record \ --predict_file=${SQUAD_DIR}/dev-v1.1.json \ --vocab_file=${BERT_BASE_DIR}/vocab.txt \ --bert_config_file=$BERT_BASE_DIR/bert_config.json \ --init_checkpoint=$BERT_BASE_DIR/bert_model.ckpt \ --train_batch_size=32 \ --learning_rate=8e-5 \ --num_train_epochs=2 \ --model_dir=${MODEL_DIR} \ --distribution_strategy=tpu \ --tpu=grpc://${TPU_IP_ADDRESS}:8470 ``` The dev set predictions will be saved into a file called predictions.json in the model_dir: ```shell python $SQUAD_DIR/evaluate-v1.1.py $SQUAD_DIR/dev-v1.1.json ./squad/predictions.json ```