# Copyright 2022 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Utils for yolo task.""" import tensorflow as tf class ListMetrics: """Private class used to cleanly place the matric values for each level.""" def __init__(self, metric_names, name="ListMetrics"): self.name = name self._metric_names = metric_names self._metrics = self.build_metric() return def build_metric(self): metric_names = self._metric_names metrics = [] for name in metric_names: metrics.append(tf.keras.metrics.Mean(name, dtype=tf.float32)) return metrics def update_state(self, loss_metrics): metrics = self._metrics for m in metrics: m.update_state(loss_metrics[m.name]) return def result(self): logs = dict() metrics = self._metrics for m in metrics: logs.update({m.name: m.result()}) return logs def reset_states(self): metrics = self._metrics for m in metrics: m.reset_states() return