# Copyright 2017 The TensorFlow Authors All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Quality metrics for the model.""" import tensorflow as tf def char_accuracy(predictions, targets, rej_char, streaming=False): """Computes character level accuracy. Both predictions and targets should have the same shape [batch_size x seq_length]. Args: predictions: predicted characters ids. targets: ground truth character ids. rej_char: the character id used to mark an empty element (end of sequence). streaming: if True, uses the streaming mean from the slim.metric module. Returns: a update_ops for execution and value tensor whose value on evaluation returns the total character accuracy. """ with tf.compat.v1.variable_scope('CharAccuracy'): predictions.get_shape().assert_is_compatible_with(targets.get_shape()) targets = tf.cast(targets, dtype=tf.int32) const_rej_char = tf.constant(rej_char, shape=targets.get_shape()) weights = tf.cast(tf.not_equal(targets, const_rej_char), dtype=tf.float32) correct_chars = tf.cast(tf.equal(predictions, targets), dtype=tf.float32) accuracy_per_example = tf.compat.v1.div( tf.reduce_sum(input_tensor=tf.multiply( correct_chars, weights), axis=1), tf.reduce_sum(input_tensor=weights, axis=1)) if streaming: return tf.contrib.metrics.streaming_mean(accuracy_per_example) else: return tf.reduce_mean(input_tensor=accuracy_per_example) def sequence_accuracy(predictions, targets, rej_char, streaming=False): """Computes sequence level accuracy. Both input tensors should have the same shape: [batch_size x seq_length]. Args: predictions: predicted character classes. targets: ground truth character classes. rej_char: the character id used to mark empty element (end of sequence). streaming: if True, uses the streaming mean from the slim.metric module. Returns: a update_ops for execution and value tensor whose value on evaluation returns the total sequence accuracy. """ with tf.compat.v1.variable_scope('SequenceAccuracy'): predictions.get_shape().assert_is_compatible_with(targets.get_shape()) targets = tf.cast(targets, dtype=tf.int32) const_rej_char = tf.constant( rej_char, shape=targets.get_shape(), dtype=tf.int32) include_mask = tf.not_equal(targets, const_rej_char) include_predictions = tf.cast( tf.compat.v1.where(include_mask, predictions, tf.zeros_like(predictions) + rej_char), dtype=tf.int32) correct_chars = tf.cast( tf.equal(include_predictions, targets), dtype=tf.float32) correct_chars_counts = tf.cast( tf.reduce_sum(input_tensor=correct_chars, axis=[1]), dtype=tf.int32) target_length = targets.get_shape().dims[1].value target_chars_counts = tf.constant( target_length, shape=correct_chars_counts.get_shape()) accuracy_per_example = tf.cast( tf.equal(correct_chars_counts, target_chars_counts), dtype=tf.float32) if streaming: return tf.contrib.metrics.streaming_mean(accuracy_per_example) else: return tf.reduce_mean(input_tensor=accuracy_per_example)