# Copyright 2019 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """BERT library to process data for classification task.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import collections import csv import os from absl import logging import tensorflow as tf import tensorflow_datasets as tfds from official.nlp.bert import tokenization class InputExample(object): """A single training/test example for simple sequence classification.""" def __init__(self, guid, text_a, text_b=None, label=None): """Constructs a InputExample. Args: guid: Unique id for the example. text_a: string. The untokenized text of the first sequence. For single sequence tasks, only this sequence must be specified. text_b: (Optional) string. The untokenized text of the second sequence. Only must be specified for sequence pair tasks. label: (Optional) string. The label of the example. This should be specified for train and dev examples, but not for test examples. """ self.guid = guid self.text_a = text_a self.text_b = text_b self.label = label class InputFeatures(object): """A single set of features of data.""" def __init__(self, input_ids, input_mask, segment_ids, label_id, is_real_example=True): self.input_ids = input_ids self.input_mask = input_mask self.segment_ids = segment_ids self.label_id = label_id self.is_real_example = is_real_example class DataProcessor(object): """Base class for data converters for sequence classification data sets.""" def __init__(self, process_text_fn=tokenization.convert_to_unicode): self.process_text_fn = process_text_fn def get_train_examples(self, data_dir): """Gets a collection of `InputExample`s for the train set.""" raise NotImplementedError() def get_dev_examples(self, data_dir): """Gets a collection of `InputExample`s for the dev set.""" raise NotImplementedError() def get_test_examples(self, data_dir): """Gets a collection of `InputExample`s for prediction.""" raise NotImplementedError() def get_labels(self): """Gets the list of labels for this data set.""" raise NotImplementedError() @staticmethod def get_processor_name(): """Gets the string identifier of the processor.""" raise NotImplementedError() @classmethod def _read_tsv(cls, input_file, quotechar=None): """Reads a tab separated value file.""" with tf.io.gfile.GFile(input_file, "r") as f: reader = csv.reader(f, delimiter="\t", quotechar=quotechar) lines = [] for line in reader: lines.append(line) return lines class XnliProcessor(DataProcessor): """Processor for the XNLI data set.""" def __init__(self, process_text_fn=tokenization.convert_to_unicode): super(XnliProcessor, self).__init__(process_text_fn) self.language = "zh" def get_train_examples(self, data_dir): """See base class.""" lines = self._read_tsv( os.path.join(data_dir, "multinli", "multinli.train.%s.tsv" % self.language)) examples = [] for (i, line) in enumerate(lines): if i == 0: continue guid = "train-%d" % (i) text_a = self.process_text_fn(line[0]) text_b = self.process_text_fn(line[1]) label = self.process_text_fn(line[2]) if label == self.process_text_fn("contradictory"): label = self.process_text_fn("contradiction") examples.append( InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label)) return examples def get_dev_examples(self, data_dir): """See base class.""" lines = self._read_tsv(os.path.join(data_dir, "xnli.dev.tsv")) examples = [] for (i, line) in enumerate(lines): if i == 0: continue guid = "dev-%d" % (i) language = self.process_text_fn(line[0]) if language != self.process_text_fn(self.language): continue text_a = self.process_text_fn(line[6]) text_b = self.process_text_fn(line[7]) label = self.process_text_fn(line[1]) examples.append( InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label)) return examples def get_labels(self): """See base class.""" return ["contradiction", "entailment", "neutral"] @staticmethod def get_processor_name(): """See base class.""" return "XNLI" class MnliProcessor(DataProcessor): """Processor for the MultiNLI data set (GLUE version).""" def get_train_examples(self, data_dir): """See base class.""" return self._create_examples( self._read_tsv(os.path.join(data_dir, "train.tsv")), "train") def get_dev_examples(self, data_dir): """See base class.""" return self._create_examples( self._read_tsv(os.path.join(data_dir, "dev_matched.tsv")), "dev_matched") def get_test_examples(self, data_dir): """See base class.""" return self._create_examples( self._read_tsv(os.path.join(data_dir, "test_matched.tsv")), "test") def get_labels(self): """See base class.""" return ["contradiction", "entailment", "neutral"] @staticmethod def get_processor_name(): """See base class.""" return "MNLI" def _create_examples(self, lines, set_type): """Creates examples for the training and dev sets.""" examples = [] for (i, line) in enumerate(lines): if i == 0: continue guid = "%s-%s" % (set_type, self.process_text_fn(line[0])) text_a = self.process_text_fn(line[8]) text_b = self.process_text_fn(line[9]) if set_type == "test": label = "contradiction" else: label = self.process_text_fn(line[-1]) examples.append( InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label)) return examples class MrpcProcessor(DataProcessor): """Processor for the MRPC data set (GLUE version).""" def get_train_examples(self, data_dir): """See base class.""" return self._create_examples( self._read_tsv(os.path.join(data_dir, "train.tsv")), "train") def get_dev_examples(self, data_dir): """See base class.""" return self._create_examples( self._read_tsv(os.path.join(data_dir, "dev.tsv")), "dev") def get_test_examples(self, data_dir): """See base class.""" return self._create_examples( self._read_tsv(os.path.join(data_dir, "test.tsv")), "test") def get_labels(self): """See base class.""" return ["0", "1"] @staticmethod def get_processor_name(): """See base class.""" return "MRPC" def _create_examples(self, lines, set_type): """Creates examples for the training and dev sets.""" examples = [] for (i, line) in enumerate(lines): if i == 0: continue guid = "%s-%s" % (set_type, i) text_a = self.process_text_fn(line[3]) text_b = self.process_text_fn(line[4]) if set_type == "test": label = "0" else: label = self.process_text_fn(line[0]) examples.append( InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label)) return examples class ColaProcessor(DataProcessor): """Processor for the CoLA data set (GLUE version).""" def get_train_examples(self, data_dir): """See base class.""" return self._create_examples( self._read_tsv(os.path.join(data_dir, "train.tsv")), "train") def get_dev_examples(self, data_dir): """See base class.""" return self._create_examples( self._read_tsv(os.path.join(data_dir, "dev.tsv")), "dev") def get_test_examples(self, data_dir): """See base class.""" return self._create_examples( self._read_tsv(os.path.join(data_dir, "test.tsv")), "test") def get_labels(self): """See base class.""" return ["0", "1"] @staticmethod def get_processor_name(): """See base class.""" return "COLA" def _create_examples(self, lines, set_type): """Creates examples for the training and dev sets.""" examples = [] for (i, line) in enumerate(lines): # Only the test set has a header if set_type == "test" and i == 0: continue guid = "%s-%s" % (set_type, i) if set_type == "test": text_a = self.process_text_fn(line[1]) label = "0" else: text_a = self.process_text_fn(line[3]) label = self.process_text_fn(line[1]) examples.append( InputExample(guid=guid, text_a=text_a, text_b=None, label=label)) return examples class SstProcessor(DataProcessor): """Processor for the SST-2 data set (GLUE version).""" def get_train_examples(self, data_dir): """See base class.""" return self._create_examples( self._read_tsv(os.path.join(data_dir, "train.tsv")), "train") def get_dev_examples(self, data_dir): """See base class.""" return self._create_examples( self._read_tsv(os.path.join(data_dir, "dev.tsv")), "dev") def get_test_examples(self, data_dir): """See base class.""" return self._create_examples( self._read_tsv(os.path.join(data_dir, "test.tsv")), "test") def get_labels(self): """See base class.""" return ["0", "1"] @staticmethod def get_processor_name(): """See base class.""" return "SST-2" def _create_examples(self, lines, set_type): """Creates examples for the training and dev sets.""" examples = [] for (i, line) in enumerate(lines): if i == 0: continue guid = "%s-%s" % (set_type, i) if set_type == "test": text_a = tokenization.convert_to_unicode(line[1]) label = "0" else: text_a = tokenization.convert_to_unicode(line[0]) label = tokenization.convert_to_unicode(line[1]) examples.append( InputExample(guid=guid, text_a=text_a, text_b=None, label=label)) return examples class QnliProcessor(DataProcessor): """Processor for the QNLI data set (GLUE version).""" def get_train_examples(self, data_dir): """See base class.""" return self._create_examples( self._read_tsv(os.path.join(data_dir, "train.tsv")), "train") def get_dev_examples(self, data_dir): """See base class.""" return self._create_examples( self._read_tsv(os.path.join(data_dir, "dev.tsv")), "dev_matched") def get_test_examples(self, data_dir): """See base class.""" return self._create_examples( self._read_tsv(os.path.join(data_dir, "test.tsv")), "test") def get_labels(self): """See base class.""" return ["entailment", "not_entailment"] @staticmethod def get_processor_name(): """See base class.""" return "QNLI" def _create_examples(self, lines, set_type): """Creates examples for the training and dev sets.""" examples = [] for (i, line) in enumerate(lines): if i == 0: continue guid = "%s-%s" % (set_type, 1) if set_type == "test": text_a = tokenization.convert_to_unicode(line[1]) text_b = tokenization.convert_to_unicode(line[2]) label = "entailment" else: text_a = tokenization.convert_to_unicode(line[1]) text_b = tokenization.convert_to_unicode(line[2]) label = tokenization.convert_to_unicode(line[-1]) examples.append( InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label)) return examples class TfdsProcessor(DataProcessor): """Processor for generic text classification TFDS data set. The TFDS parameters are expected to be provided in the tfds_params string, in a comma-separated list of parameter assignments. Examples: tfds_params="dataset=scicite,text_key=string" tfds_params="dataset=imdb_reviews,test_split=,dev_split=test" tfds_params="dataset=glue/cola,text_key=sentence" tfds_params="dataset=glue/sst2,text_key=sentence" tfds_params="dataset=glue/qnli,text_key=question,text_b_key=sentence" tfds_params="dataset=glue/mrpc,text_key=sentence1,text_b_key=sentence2" Possible parameters (please refer to the documentation of Tensorflow Datasets (TFDS) for the meaning of individual parameters): dataset: Required dataset name (potentially with subset and version number). data_dir: Optional TFDS source root directory. train_split: Name of the train split (defaults to `train`). dev_split: Name of the dev split (defaults to `validation`). test_split: Name of the test split (defaults to `test`). text_key: Key of the text_a feature (defaults to `text`). text_b_key: Key of the second text feature if available. label_key: Key of the label feature (defaults to `label`). test_text_key: Key of the text feature to use in test set. test_text_b_key: Key of the second text feature to use in test set. test_label: String to be used as the label for all test examples. """ def __init__(self, tfds_params, process_text_fn=tokenization.convert_to_unicode): super(TfdsProcessor, self).__init__(process_text_fn) self._process_tfds_params_str(tfds_params) self.dataset, info = tfds.load(self.dataset_name, data_dir=self.data_dir, with_info=True) self._labels = list(range(info.features[self.label_key].num_classes)) def _process_tfds_params_str(self, params_str): """Extracts TFDS parameters from a comma-separated assignements string.""" tuples = [x.split("=") for x in params_str.split(",")] d = {k.strip(): v.strip() for k, v in tuples} self.dataset_name = d["dataset"] # Required. self.data_dir = d.get("data_dir", None) self.train_split = d.get("train_split", "train") self.dev_split = d.get("dev_split", "validation") self.test_split = d.get("test_split", "test") self.text_key = d.get("text_key", "text") self.text_b_key = d.get("text_b_key", None) self.label_key = d.get("label_key", "label") self.test_text_key = d.get("test_text_key", self.text_key) self.test_text_b_key = d.get("test_text_b_key", self.text_b_key) self.test_label = d.get("test_label", "test_example") def get_train_examples(self, data_dir): assert data_dir is None return self._create_examples(self.train_split, "train") def get_dev_examples(self, data_dir): assert data_dir is None return self._create_examples(self.dev_split, "dev") def get_test_examples(self, data_dir): assert data_dir is None return self._create_examples(self.test_split, "test") def get_labels(self): return self._labels def get_processor_name(self): return "TFDS_" + self.dataset_name def _create_examples(self, split_name, set_type): """Creates examples for the training and dev sets.""" if split_name not in self.dataset: raise ValueError("Split {} not available.".format(split_name)) dataset = self.dataset[split_name].as_numpy_iterator() examples = [] text_b = None for i, example in enumerate(dataset): guid = "%s-%s" % (set_type, i) if set_type == "test": text_a = self.process_text_fn(example[self.test_text_key]) if self.test_text_b_key: text_b = self.process_text_fn(example[self.test_text_b_key]) label = self.test_label else: text_a = self.process_text_fn(example[self.text_key]) if self.text_b_key: text_b = self.process_text_fn(example[self.text_b_key]) label = int(example[self.label_key]) examples.append( InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label)) return examples def convert_single_example(ex_index, example, label_list, max_seq_length, tokenizer): """Converts a single `InputExample` into a single `InputFeatures`.""" label_map = {} for (i, label) in enumerate(label_list): label_map[label] = i tokens_a = tokenizer.tokenize(example.text_a) tokens_b = None if example.text_b: tokens_b = tokenizer.tokenize(example.text_b) if tokens_b: # Modifies `tokens_a` and `tokens_b` in place so that the total # length is less than the specified length. # Account for [CLS], [SEP], [SEP] with "- 3" _truncate_seq_pair(tokens_a, tokens_b, max_seq_length - 3) else: # Account for [CLS] and [SEP] with "- 2" if len(tokens_a) > max_seq_length - 2: tokens_a = tokens_a[0:(max_seq_length - 2)] # The convention in BERT is: # (a) For sequence pairs: # tokens: [CLS] is this jack ##son ##ville ? [SEP] no it is not . [SEP] # type_ids: 0 0 0 0 0 0 0 0 1 1 1 1 1 1 # (b) For single sequences: # tokens: [CLS] the dog is hairy . [SEP] # type_ids: 0 0 0 0 0 0 0 # # Where "type_ids" are used to indicate whether this is the first # sequence or the second sequence. The embedding vectors for `type=0` and # `type=1` were learned during pre-training and are added to the wordpiece # embedding vector (and position vector). This is not *strictly* necessary # since the [SEP] token unambiguously separates the sequences, but it makes # it easier for the model to learn the concept of sequences. # # For classification tasks, the first vector (corresponding to [CLS]) is # used as the "sentence vector". Note that this only makes sense because # the entire model is fine-tuned. tokens = [] segment_ids = [] tokens.append("[CLS]") segment_ids.append(0) for token in tokens_a: tokens.append(token) segment_ids.append(0) tokens.append("[SEP]") segment_ids.append(0) if tokens_b: for token in tokens_b: tokens.append(token) segment_ids.append(1) tokens.append("[SEP]") segment_ids.append(1) input_ids = tokenizer.convert_tokens_to_ids(tokens) # The mask has 1 for real tokens and 0 for padding tokens. Only real # tokens are attended to. input_mask = [1] * len(input_ids) # Zero-pad up to the sequence length. while len(input_ids) < max_seq_length: input_ids.append(0) input_mask.append(0) segment_ids.append(0) assert len(input_ids) == max_seq_length assert len(input_mask) == max_seq_length assert len(segment_ids) == max_seq_length label_id = label_map[example.label] if ex_index < 5: logging.info("*** Example ***") logging.info("guid: %s", (example.guid)) logging.info("tokens: %s", " ".join([tokenization.printable_text(x) for x in tokens])) logging.info("input_ids: %s", " ".join([str(x) for x in input_ids])) logging.info("input_mask: %s", " ".join([str(x) for x in input_mask])) logging.info("segment_ids: %s", " ".join([str(x) for x in segment_ids])) logging.info("label: %s (id = %d)", example.label, label_id) feature = InputFeatures( input_ids=input_ids, input_mask=input_mask, segment_ids=segment_ids, label_id=label_id, is_real_example=True) return feature def file_based_convert_examples_to_features(examples, label_list, max_seq_length, tokenizer, output_file): """Convert a set of `InputExample`s to a TFRecord file.""" tf.io.gfile.makedirs(os.path.dirname(output_file)) writer = tf.io.TFRecordWriter(output_file) for (ex_index, example) in enumerate(examples): if ex_index % 10000 == 0: logging.info("Writing example %d of %d", ex_index, len(examples)) feature = convert_single_example(ex_index, example, label_list, max_seq_length, tokenizer) def create_int_feature(values): f = tf.train.Feature(int64_list=tf.train.Int64List(value=list(values))) return f features = collections.OrderedDict() features["input_ids"] = create_int_feature(feature.input_ids) features["input_mask"] = create_int_feature(feature.input_mask) features["segment_ids"] = create_int_feature(feature.segment_ids) features["label_ids"] = create_int_feature([feature.label_id]) features["is_real_example"] = create_int_feature( [int(feature.is_real_example)]) tf_example = tf.train.Example(features=tf.train.Features(feature=features)) writer.write(tf_example.SerializeToString()) writer.close() def _truncate_seq_pair(tokens_a, tokens_b, max_length): """Truncates a sequence pair in place to the maximum length.""" # This is a simple heuristic which will always truncate the longer sequence # one token at a time. This makes more sense than truncating an equal percent # of tokens from each, since if one sequence is very short then each token # that's truncated likely contains more information than a longer sequence. while True: total_length = len(tokens_a) + len(tokens_b) if total_length <= max_length: break if len(tokens_a) > len(tokens_b): tokens_a.pop() else: tokens_b.pop() def generate_tf_record_from_data_file(processor, data_dir, tokenizer, train_data_output_path=None, eval_data_output_path=None, max_seq_length=128): """Generates and saves training data into a tf record file. Arguments: processor: Input processor object to be used for generating data. Subclass of `DataProcessor`. data_dir: Directory that contains train/eval data to process. Data files should be in from "dev.tsv", "test.tsv", or "train.tsv". tokenizer: The tokenizer to be applied on the data. train_data_output_path: Output to which processed tf record for training will be saved. eval_data_output_path: Output to which processed tf record for evaluation will be saved. max_seq_length: Maximum sequence length of the to be generated training/eval data. Returns: A dictionary containing input meta data. """ assert train_data_output_path or eval_data_output_path label_list = processor.get_labels() assert train_data_output_path train_input_data_examples = processor.get_train_examples(data_dir) file_based_convert_examples_to_features(train_input_data_examples, label_list, max_seq_length, tokenizer, train_data_output_path) num_training_data = len(train_input_data_examples) if eval_data_output_path: eval_input_data_examples = processor.get_dev_examples(data_dir) file_based_convert_examples_to_features(eval_input_data_examples, label_list, max_seq_length, tokenizer, eval_data_output_path) meta_data = { "task_type": "bert_classification", "processor_type": processor.get_processor_name(), "num_labels": len(processor.get_labels()), "train_data_size": num_training_data, "max_seq_length": max_seq_length, } if eval_data_output_path: meta_data["eval_data_size"] = len(eval_input_data_examples) return meta_data