# Copyright 2022 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Image classification with darknet configs.""" import dataclasses from typing import List, Optional from official.core import config_definitions as cfg from official.core import exp_factory from official.modeling import hyperparams from official.projects.yolo.configs import backbones from official.vision.configs import common from official.vision.configs import image_classification as imc @dataclasses.dataclass class ImageClassificationModel(hyperparams.Config): """Image classification model config.""" num_classes: int = 0 input_size: List[int] = dataclasses.field(default_factory=lambda: [224, 224]) backbone: backbones.Backbone = backbones.Backbone( type='darknet', darknet=backbones.Darknet()) dropout_rate: float = 0.0 norm_activation: common.NormActivation = common.NormActivation() # Adds a Batch Normalization layer pre-GlobalAveragePooling in classification. add_head_batch_norm: bool = False kernel_initializer: str = 'VarianceScaling' @dataclasses.dataclass class Losses(hyperparams.Config): one_hot: bool = True label_smoothing: float = 0.0 l2_weight_decay: float = 0.0 @dataclasses.dataclass class ImageClassificationTask(cfg.TaskConfig): """The model config.""" model: ImageClassificationModel = ImageClassificationModel() train_data: imc.DataConfig = imc.DataConfig(is_training=True) validation_data: imc.DataConfig = imc.DataConfig(is_training=False) evaluation: imc.Evaluation = imc.Evaluation() losses: Losses = Losses() gradient_clip_norm: float = 0.0 logging_dir: Optional[str] = None @exp_factory.register_config_factory('darknet_classification') def darknet_classification() -> cfg.ExperimentConfig: """Image classification general.""" return cfg.ExperimentConfig( task=ImageClassificationTask(), trainer=cfg.TrainerConfig(), restrictions=[ 'task.train_data.is_training != None', 'task.validation_data.is_training != None' ])