# Copyright 2021 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Unit tests for ranking model and associated functionality.""" import json import os from absl import flags from absl.testing import parameterized import tensorflow as tf from official.recommendation.ranking import common from official.recommendation.ranking import train FLAGS = flags.FLAGS def _get_params_override(vocab_sizes, interaction='dot', use_orbit=True, strategy='mirrored'): # Update `data_dir` if `synthetic_data=False`. data_dir = '' return json.dumps({ 'runtime': { 'distribution_strategy': strategy, }, 'task': { 'model': { 'vocab_sizes': vocab_sizes, 'embedding_dim': [8] * len(vocab_sizes), 'bottom_mlp': [64, 32, 8], 'interaction': interaction, }, 'train_data': { 'input_path': os.path.join(data_dir, 'train/*'), 'global_batch_size': 16, }, 'validation_data': { 'input_path': os.path.join(data_dir, 'eval/*'), 'global_batch_size': 16, }, 'use_synthetic_data': True, }, 'trainer': { 'use_orbit': use_orbit, 'validation_interval': 20, 'validation_steps': 20, 'train_steps': 40, }, }) class TrainTest(parameterized.TestCase, tf.test.TestCase): def setUp(self): super().setUp() self._temp_dir = self.get_temp_dir() self._model_dir = os.path.join(self._temp_dir, 'model_dir') tf.io.gfile.makedirs(self._model_dir) FLAGS.model_dir = self._model_dir FLAGS.tpu = '' def tearDown(self): tf.io.gfile.rmtree(self._model_dir) super().tearDown() @parameterized.named_parameters( ('DlrmOneDeviceCTL', 'one_device', 'dot', True), ('DlrmOneDevice', 'one_device', 'dot', False), ('DcnOneDeviceCTL', 'one_device', 'cross', True), ('DcnOneDevice', 'one_device', 'cross', False), ('DlrmTPUCTL', 'tpu', 'dot', True), ('DlrmTPU', 'tpu', 'dot', False), ('DcnTPUCTL', 'tpu', 'cross', True), ('DcnTPU', 'tpu', 'cross', False), ('DlrmMirroredCTL', 'Mirrored', 'dot', True), ('DlrmMirrored', 'Mirrored', 'dot', False), ('DcnMirroredCTL', 'Mirrored', 'cross', True), ('DcnMirrored', 'Mirrored', 'cross', False), ) def testTrainEval(self, strategy, interaction, use_orbit=True): # Set up simple trainer with synthetic data. # By default the mode must be `train_and_eval`. self.assertEqual(FLAGS.mode, 'train_and_eval') vocab_sizes = [40, 12, 11, 13] FLAGS.params_override = _get_params_override(vocab_sizes=vocab_sizes, interaction=interaction, use_orbit=use_orbit, strategy=strategy) train.main('unused_args') self.assertNotEmpty( tf.io.gfile.glob(os.path.join(self._model_dir, 'params.yaml'))) @parameterized.named_parameters( ('DlrmTPUCTL', 'tpu', 'dot', True), ('DlrmTPU', 'tpu', 'dot', False), ('DcnTPUCTL', 'tpu', 'cross', True), ('DcnTPU', 'tpu', 'cross', False), ('DlrmMirroredCTL', 'Mirrored', 'dot', True), ('DlrmMirrored', 'Mirrored', 'dot', False), ('DcnMirroredCTL', 'Mirrored', 'cross', True), ('DcnMirrored', 'Mirrored', 'cross', False), ) def testTrainThenEval(self, strategy, interaction, use_orbit=True): # Set up simple trainer with synthetic data. vocab_sizes = [40, 12, 11, 13] FLAGS.params_override = _get_params_override(vocab_sizes=vocab_sizes, interaction=interaction, use_orbit=use_orbit, strategy=strategy) # Training. FLAGS.mode = 'train' train.main('unused_args') self.assertNotEmpty( tf.io.gfile.glob(os.path.join(self._model_dir, 'params.yaml'))) # Evaluation. FLAGS.mode = 'eval' train.main('unused_args') if __name__ == '__main__': common.define_flags() tf.test.main()