# Copyright 2021 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """A script to export the MobileBERT encoder model as a TF-Hub SavedModel.""" from absl import app from absl import flags from absl import logging import tensorflow as tf from official.projects.mobilebert import model_utils FLAGS = flags.FLAGS flags.DEFINE_string( "bert_config_file", None, "Bert configuration file to define core mobilebert layers.") flags.DEFINE_string("model_checkpoint_path", None, "File path to TF model checkpoint.") flags.DEFINE_string("export_path", None, "TF-Hub SavedModel destination path.") flags.DEFINE_string("vocab_file", None, "The vocabulary file that the BERT model was trained on.") flags.DEFINE_bool("do_lower_case", True, "Whether to lowercase.") def create_mobilebert_model(bert_config): """Creates a model for exporting to tfhub.""" pretrainer = model_utils.create_mobilebert_pretrainer(bert_config) encoder = pretrainer.encoder_network encoder_inputs_dict = {x.name: x for x in encoder.inputs} encoder_output_dict = encoder(encoder_inputs_dict) # For interchangeability with other text representations, # add "default" as an alias for MobileBERT's whole-input reptesentations. encoder_output_dict["default"] = encoder_output_dict["pooled_output"] core_model = tf.keras.Model( inputs=encoder_inputs_dict, outputs=encoder_output_dict) pretrainer_inputs_dict = {x.name: x for x in pretrainer.inputs} pretrainer_output_dict = pretrainer(pretrainer_inputs_dict) mlm_model = tf.keras.Model( inputs=pretrainer_inputs_dict, outputs=pretrainer_output_dict) # Set `_auto_track_sub_layers` to False, so that the additional weights # from `mlm` sub-object will not be included in the core model. # TODO(b/169210253): Use public API after the bug is resolved. core_model._auto_track_sub_layers = False # pylint: disable=protected-access core_model.mlm = mlm_model return core_model, pretrainer def export_bert_tfhub(bert_config, model_checkpoint_path, hub_destination, vocab_file, do_lower_case): """Restores a tf.keras.Model and saves for TF-Hub.""" core_model, pretrainer = create_mobilebert_model(bert_config) checkpoint = tf.train.Checkpoint(**pretrainer.checkpoint_items) logging.info("Begin to load model") checkpoint.restore(model_checkpoint_path).assert_existing_objects_matched() logging.info("Loading model finished") core_model.vocab_file = tf.saved_model.Asset(vocab_file) core_model.do_lower_case = tf.Variable(do_lower_case, trainable=False) logging.info("Begin to save files for tfhub at %s", hub_destination) core_model.save(hub_destination, include_optimizer=False, save_format="tf") logging.info("tfhub files exported!") def main(argv): if len(argv) > 1: raise app.UsageError("Too many command-line arguments.") bert_config = model_utils.BertConfig.from_json_file(FLAGS.bert_config_file) export_bert_tfhub(bert_config, FLAGS.model_checkpoint_path, FLAGS.export_path, FLAGS.vocab_file, FLAGS.do_lower_case) if __name__ == "__main__": app.run(main)