# Copyright 2021 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """XLNet training utils.""" import os import re from typing import Any, Callable, Dict, Optional, Text from absl import logging import tensorflow as tf from official.nlp.bert import model_training_utils from official.nlp.xlnet import data_utils # pytype: disable=attribute-error # pylint: disable=g-bare-generic,unused-import _MIN_SUMMARY_STEPS = 10 def _save_checkpoint(checkpoint, model_dir, checkpoint_prefix): """Saves model to with provided checkpoint prefix.""" checkpoint_path = os.path.join(model_dir, checkpoint_prefix) saved_path = checkpoint.save(checkpoint_path) logging.info("Saving model as TF checkpoint: %s", saved_path) return def _float_metric_value(metric): """Gets the value of a float-value keras metric.""" return metric.result().numpy().astype(float) def train( strategy: tf.distribute.Strategy, model_fn: Callable, input_meta_data: Dict, train_input_fn: Callable, total_training_steps: int, steps_per_loop: int, optimizer: tf.keras.optimizers.Optimizer, learning_rate_fn: tf.keras.optimizers.schedules.LearningRateSchedule, eval_fn: Optional[Callable[[tf.keras.Model, int, tf.summary.SummaryWriter], Any]] = None, metric_fn: Optional[Callable[[], tf.keras.metrics.Metric]] = None, init_checkpoint: Optional[Text] = None, init_from_transformerxl: Optional[bool] = False, model_dir: Optional[Text] = None, save_steps: Optional[int] = None, run_eagerly: Optional[bool] = False): """Runs customized training. Args: strategy: Distribution strategy on which to run low level training loop. model_fn: The function returns a keras.Model. input_meta_data: A dictionary of params: `mem_len`, `lr_layer_decay_rate`, `n_layer`, `batch_size_per_core` and `d_model`. train_input_fn: Function returns a tf.data.Dataset used for training. total_training_steps: Number of steps to train in total. steps_per_loop: Number of steps per graph-mode loop. In order to reduce communication in eager context, training logs are printed every steps_per_loop. optimizer: The optimizer for model. learning_rate_fn: the learning rate schedule. eval_fn: A callback of evaluation function, that takes a keras.Model, current step and evaluation summary writer. metric_fn: A metrics function returns a Keras Metric object to record evaluation result using evaluation dataset or with training dataset after every epoch. init_checkpoint: Optional checkpoint to load to `sub_model` returned by `model_fn`. init_from_transformerxl: Whether to load to `transformerxl_model` of `model_fn`. model_dir: The directory of model (checkpoints, summaries). save_steps: The frequency to save checkpoints. Every save_steps, we save a model checkpoint. Model checkpoint will be saved and evaluation will be conducted if evaluation dataset is provided. run_eagerly: Whether to run training eagerly. Returns: Last training step logits if training happens, otherwise returns None. Raises: TypeError: if model directory is not specified. """ required_arguments = [ train_input_fn, total_training_steps, steps_per_loop, optimizer, learning_rate_fn, save_steps ] if [arg for arg in required_arguments if arg is None]: raise ValueError("`train_input_fn`, `total_training_steps`, " "`steps_per_loop`, `optimizer`, `save_steps` and " "`learning_rate_fn` are required parameters.") if not model_dir: raise TypeError("Model directory must be specified.") train_iterator = data_utils.get_input_iterator(train_input_fn, strategy) if not tf.io.gfile.exists(model_dir): tf.io.gfile.mkdir(model_dir) # Create summary writers summary_dir = os.path.join(model_dir, "summaries") if not tf.io.gfile.exists(summary_dir): tf.io.gfile.mkdir(summary_dir) train_summary_writer = None eval_summary_writer = None if eval_fn: eval_summary_writer = tf.summary.create_file_writer( os.path.join(summary_dir, "eval")) if steps_per_loop >= _MIN_SUMMARY_STEPS: # Only writes summary when the stats are collected sufficiently over # enough steps. train_summary_writer = tf.summary.create_file_writer( os.path.join(summary_dir, "train")) with strategy.scope(): model = model_fn() if init_checkpoint: logging.info("restore from %s", init_checkpoint) if init_from_transformerxl: checkpoint = tf.train.Checkpoint( transformer_xl=model.transformerxl_model) else: checkpoint = tf.train.Checkpoint(model=model) checkpoint.restore(init_checkpoint) model.optimizer = optimizer if not hasattr(model, "optimizer"): raise ValueError("User should set optimizer attribute to model.") train_loss_metric = tf.keras.metrics.Mean("training_loss", dtype=tf.float32) train_metric = None if metric_fn: train_metric = metric_fn() def _replicated_step(inputs, mem=None): """Replicated training step.""" inputs["mems"] = mem with tf.GradientTape() as tape: mem, logits = model(inputs, training=True) loss = model.losses train_loss_metric.update_state(loss) if train_metric: train_metric.update_state(inputs["label_ids"], logits) scaled_loss = loss[0] * 1.0 / float(strategy.num_replicas_in_sync) # Collects training variables. tvars = model.trainable_variables grads = tape.gradient(scaled_loss, tvars) clipped, _ = tf.clip_by_global_norm(grads, clip_norm=1.0) if input_meta_data["lr_layer_decay_rate"] != 1.0: n_layer = 0 for i in range(len(clipped)): m = re.search(r"model/transformer/layer_(\d+?)/", tvars[i].name) if not m: continue n_layer = max(n_layer, int(m.group(1)) + 1) for i in range(len(clipped)): for l in range(n_layer): if "model/transformer/layer_{}/".format(l) in tvars[i].name: abs_rate = input_meta_data["lr_layer_decay_rate"]**( n_layer - 1 - l) clipped[i] *= abs_rate logging.info("Apply mult {:.4f} to layer-{} grad of {}".format( abs_rate, l, tvars[i].name)) break optimizer.apply_gradients(zip(clipped, tvars)) if input_meta_data["mem_len"] > 0: return mem def train_steps(iterator, steps): """Performs distributed training steps in a loop. Args: iterator: the distributed iterator of training datasets. steps: an tf.int32 integer tensor to specify number of steps to run inside host training loop. Raises: ValueError: Any of the arguments or tensor shapes are invalid. Returns: logits: logits computed. """ if not isinstance(steps, tf.Tensor): raise ValueError("steps should be an Tensor. Python object may cause " "retracing.") def cache_fn(): """Initializes memory tensor used in XLNet pretraining.""" mems = [] if input_meta_data["mem_len"] > 0: for _ in range(input_meta_data["n_layer"]): zeros = tf.zeros([ input_meta_data["batch_size_per_core"], input_meta_data["mem_len"], input_meta_data["d_model"] ], dtype=tf.float32) mems.append(zeros) return mems if input_meta_data["mem_len"] > 0: mem = strategy.run(cache_fn) for _ in tf.range(steps): mem = strategy.run( _replicated_step, args=( next(iterator), mem, )) else: for _ in tf.range(steps): strategy.run(_replicated_step, args=(next(iterator),)) if not run_eagerly: train_steps = tf.function(train_steps) logging.info("Start training...") checkpoint = tf.train.Checkpoint(model=model, optimizer=optimizer) latest_checkpoint_file = tf.train.latest_checkpoint(model_dir) if latest_checkpoint_file: logging.info("Checkpoint file %s found and restoring from checkpoint", latest_checkpoint_file) checkpoint.restore(latest_checkpoint_file) logging.info("Loading from checkpoint file completed") current_step = optimizer.iterations.numpy() checkpoint_name = "xlnet_step_{step}.ckpt" while current_step < total_training_steps: train_loss_metric.reset_states() if train_metric: train_metric.reset_states() steps = model_training_utils.steps_to_run(current_step, save_steps, steps_per_loop) train_steps(train_iterator, tf.convert_to_tensor(steps, dtype=tf.int32)) current_step += steps train_loss = _float_metric_value(train_loss_metric) log_stream = "Train step: %d/%d / lr = %.9f / loss = %.7f" % ( current_step, total_training_steps, learning_rate_fn(current_step), train_loss) if train_metric: log_stream += " / %s = %f" % (train_metric.name, _float_metric_value(train_metric)) logging.info(log_stream) if train_summary_writer: with train_summary_writer.as_default(): tf.summary.scalar( "learning_rate", learning_rate_fn(current_step), step=current_step) tf.summary.scalar( train_loss_metric.name, train_loss, step=current_step) if train_metric: tf.summary.scalar( train_metric.name, _float_metric_value(train_metric), step=current_step) train_summary_writer.flush() if model_dir and current_step % save_steps == 0: _save_checkpoint(checkpoint, model_dir, checkpoint_name.format(step=current_step)) if eval_fn and current_step % save_steps == 0: logging.info("Running evaluation after step: %s.", current_step) eval_fn(model, current_step, eval_summary_writer) if model_dir: _save_checkpoint(checkpoint, model_dir, checkpoint_name.format(step=current_step)) if eval_fn: logging.info("Running final evaluation after training is complete.") eval_metric = eval_fn(model, current_step, eval_summary_writer) training_summary = { "total_training_steps": total_training_steps, "train_loss": _float_metric_value(train_loss_metric), } if train_metric: training_summary["last_train_metrics"] = _float_metric_value(train_metric) if eval_fn: # eval_metric is supposed to be a float. training_summary["eval_metrics"] = eval_metric model_training_utils.write_txt_summary(training_summary, summary_dir) return model