# Copyright 2021 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """A binary/library to export TF-NLP serving `SavedModel`.""" import os from typing import Any, Dict, Text from absl import app from absl import flags import dataclasses import yaml from official.core import base_task from official.core import task_factory from official.modeling import hyperparams from official.modeling.hyperparams import base_config from official.nlp.serving import export_savedmodel_util from official.nlp.serving import serving_modules from official.nlp.tasks import masked_lm from official.nlp.tasks import question_answering from official.nlp.tasks import sentence_prediction from official.nlp.tasks import tagging FLAGS = flags.FLAGS SERVING_MODULES = { sentence_prediction.SentencePredictionTask: serving_modules.SentencePrediction, masked_lm.MaskedLMTask: serving_modules.MaskedLM, question_answering.QuestionAnsweringTask: serving_modules.QuestionAnswering, tagging.TaggingTask: serving_modules.Tagging } def define_flags(): """Defines flags.""" flags.DEFINE_string("task_name", "SentencePrediction", "The task to export.") flags.DEFINE_string("config_file", None, "The path to task/experiment yaml config file.") flags.DEFINE_string( "checkpoint_path", None, "Object-based checkpoint path, from the training model directory.") flags.DEFINE_string("export_savedmodel_dir", None, "Output saved model directory.") flags.DEFINE_string( "serving_params", None, "a YAML/JSON string or csv string for the serving parameters.") flags.DEFINE_string( "function_keys", None, "A string key to retrieve pre-defined serving signatures.") flags.DEFINE_string( "module_key", None, "For multi-task case, load the export module weights from a specific " "checkpoint item.") flags.DEFINE_bool("convert_tpu", False, "") flags.DEFINE_multi_integer("allowed_batch_size", None, "Allowed batch sizes for batching ops.") def lookup_export_module(task: base_task.Task): export_module_cls = SERVING_MODULES.get(task.__class__, None) if export_module_cls is None: ValueError("No registered export module for the task: %s", task.__class__) return export_module_cls def create_export_module(*, task_name: Text, config_file: Text, serving_params: Dict[Text, Any]): """Creates a ExportModule.""" task_config_cls = None task_cls = None # pylint: disable=protected-access for key, value in task_factory._REGISTERED_TASK_CLS.items(): print(key.__name__) if task_name in key.__name__: task_config_cls, task_cls = key, value break if task_cls is None: raise ValueError("Failed to identify the task class. The provided task " f"name is {task_name}") # pylint: enable=protected-access # TODO(hongkuny): Figure out how to separate the task config from experiments. @dataclasses.dataclass class Dummy(base_config.Config): task: task_config_cls = task_config_cls() dummy_exp = Dummy() dummy_exp = hyperparams.override_params_dict( dummy_exp, config_file, is_strict=False) dummy_exp.task.validation_data = None task = task_cls(dummy_exp.task) model = task.build_model() export_module_cls = lookup_export_module(task) params = export_module_cls.Params(**serving_params) return export_module_cls(params=params, model=model) def main(_): serving_params = yaml.load( hyperparams.nested_csv_str_to_json_str(FLAGS.serving_params), Loader=yaml.FullLoader) export_module = create_export_module( task_name=FLAGS.task_name, config_file=FLAGS.config_file, serving_params=serving_params) export_dir = export_savedmodel_util.export( export_module, function_keys=[FLAGS.function_keys], checkpoint_path=FLAGS.checkpoint_path, export_savedmodel_dir=FLAGS.export_savedmodel_dir, module_key=FLAGS.module_key) if FLAGS.convert_tpu: # pylint: disable=g-import-not-at-top from cloud_tpu.inference_converter import converter_cli from cloud_tpu.inference_converter import converter_options_pb2 tpu_dir = os.path.join(export_dir, "tpu") options = converter_options_pb2.ConverterOptions() if FLAGS.allowed_batch_size is not None: allowed_batch_sizes = sorted(FLAGS.allowed_batch_size) options.batch_options.num_batch_threads = 4 options.batch_options.max_batch_size = allowed_batch_sizes[-1] options.batch_options.batch_timeout_micros = 100000 options.batch_options.allowed_batch_sizes[:] = allowed_batch_sizes options.batch_options.max_enqueued_batches = 1000 converter_cli.ConvertSavedModel( export_dir, tpu_dir, function_alias="tpu_candidate", options=options, graph_rewrite_only=True) if __name__ == "__main__": define_flags() app.run(main)