# Copyright 2019 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Executes BERT SQuAD benchmarks and accuracy tests.""" import json import os import time from absl import flags from absl import logging from absl.testing import flagsaver import tensorflow as tf from official.benchmark import benchmark_wrappers from official.benchmark import bert_benchmark_utils as benchmark_utils from official.benchmark import owner_utils from official.common import distribute_utils from official.nlp.bert import run_squad from official.utils.misc import keras_utils # pylint: disable=line-too-long PRETRAINED_CHECKPOINT_PATH = 'gs://cloud-tpu-checkpoints/bert/keras_bert/uncased_L-24_H-1024_A-16/bert_model.ckpt' SQUAD_TRAIN_DATA_PATH = 'gs://tf-perfzero-data/bert/squad/squad_train.tf_record' SQUAD_PREDICT_FILE = 'gs://tf-perfzero-data/bert/squad/dev-v1.1.json' SQUAD_VOCAB_FILE = 'gs://tf-perfzero-data/bert/squad/vocab.txt' SQUAD_MEDIUM_INPUT_META_DATA_PATH = 'gs://tf-perfzero-data/bert/squad/squad_medium_meta_data' SQUAD_LONG_INPUT_META_DATA_PATH = 'gs://tf-perfzero-data/bert/squad/squad_long_meta_data' SQUAD_FULL_INPUT_META_DATA_PATH = 'gs://tf-perfzero-data/bert/squad/squad_full_meta_data' MODEL_CONFIG_FILE_PATH = 'gs://cloud-tpu-checkpoints/bert/keras_bert/uncased_L-24_H-1024_A-16/bert_config.json' # pylint: enable=line-too-long TMP_DIR = os.getenv('TMPDIR') FLAGS = flags.FLAGS class BertSquadBenchmarkBase(benchmark_utils.BertBenchmarkBase): """Base class to hold methods common to test classes in the module.""" def __init__(self, output_dir=None, tpu=None, **kwargs): super(BertSquadBenchmarkBase, self).__init__( output_dir=output_dir, tpu=tpu, **kwargs) def _read_training_summary_from_file(self): """Reads the training summary from a file.""" summary_path = os.path.join(FLAGS.model_dir, 'summaries/training_summary.txt') with tf.io.gfile.GFile(summary_path, 'rb') as reader: return json.loads(reader.read().decode('utf-8')) def _read_input_meta_data_from_file(self): """Reads the input metadata from a file.""" with tf.io.gfile.GFile(FLAGS.input_meta_data_path, 'rb') as reader: return json.loads(reader.read().decode('utf-8')) def _get_distribution_strategy(self, ds_type='mirrored'): """Gets the distribution strategy. Args: ds_type: String, the distribution strategy type to be used. Can be 'mirrored', 'multi_worker_mirrored', 'tpu' and 'off'. Returns: A `tf.distribute.DistibutionStrategy` object. """ if self.tpu or ds_type == 'tpu': return distribute_utils.get_distribution_strategy( distribution_strategy='tpu', tpu_address=self.tpu) elif ds_type == 'multi_worker_mirrored': # Configures cluster spec for multi-worker distribution strategy. _ = distribute_utils.configure_cluster(FLAGS.worker_hosts, FLAGS.task_index) return distribute_utils.get_distribution_strategy( distribution_strategy=ds_type, num_gpus=self.num_gpus, all_reduce_alg=FLAGS.all_reduce_alg) def _init_gpu_and_data_threads(self): """Set env variables before any TF calls.""" if FLAGS.tf_gpu_thread_mode: keras_utils.set_gpu_thread_mode_and_count( per_gpu_thread_count=FLAGS.per_gpu_thread_count, gpu_thread_mode=FLAGS.tf_gpu_thread_mode, num_gpus=self.num_gpus, datasets_num_private_threads=FLAGS.datasets_num_private_threads) @flagsaver.flagsaver def _train_squad(self, run_eagerly=False, ds_type='mirrored'): """Runs BERT SQuAD training. Uses mirrored strategy by default.""" self._init_gpu_and_data_threads() input_meta_data = self._read_input_meta_data_from_file() strategy = self._get_distribution_strategy(ds_type) run_squad.train_squad( strategy=strategy, input_meta_data=input_meta_data, run_eagerly=run_eagerly, custom_callbacks=[self.timer_callback]) @flagsaver.flagsaver def _evaluate_squad(self, ds_type='mirrored'): """Runs BERT SQuAD evaluation. Uses mirrored strategy by default.""" self._init_gpu_and_data_threads() input_meta_data = self._read_input_meta_data_from_file() strategy = self._get_distribution_strategy(ds_type) if input_meta_data.get('version_2_with_negative', False): logging.error('In memory evaluation result for SQuAD v2 is not accurate') eval_metrics = run_squad.eval_squad( strategy=strategy, input_meta_data=input_meta_data) # Use F1 score as reported evaluation metric. self.eval_metrics = eval_metrics['final_f1'] class BertSquadBenchmarkReal(BertSquadBenchmarkBase): """Short benchmark performance tests for BERT SQuAD model. Tests BERT SQuAD performance in different GPU configurations. The naming convention of below test cases follow `benchmark_(number of gpus)_gpu` format for GPUs and `benchmark_(topology)_tpu` format for TPUs. """ def __init__(self, output_dir=TMP_DIR, tpu=None, **kwargs): super(BertSquadBenchmarkReal, self).__init__( output_dir=output_dir, tpu=tpu, **kwargs) def _setup(self): """Sets up the benchmark and SQuAD flags.""" super(BertSquadBenchmarkReal, self)._setup() FLAGS.train_data_path = SQUAD_TRAIN_DATA_PATH FLAGS.predict_file = SQUAD_PREDICT_FILE FLAGS.vocab_file = SQUAD_VOCAB_FILE FLAGS.bert_config_file = MODEL_CONFIG_FILE_PATH FLAGS.num_train_epochs = 1 FLAGS.steps_per_loop = 100 @benchmark_wrappers.enable_runtime_flags def _run_and_report_benchmark(self, run_eagerly=False, ds_type='mirrored'): """Runs the benchmark and reports various metrics.""" if FLAGS.train_batch_size <= 4 or run_eagerly: FLAGS.input_meta_data_path = SQUAD_MEDIUM_INPUT_META_DATA_PATH else: FLAGS.input_meta_data_path = SQUAD_LONG_INPUT_META_DATA_PATH start_time_sec = time.time() self._train_squad(run_eagerly=run_eagerly, ds_type=ds_type) wall_time_sec = time.time() - start_time_sec summary = self._read_training_summary_from_file() summary['start_time_sec'] = start_time_sec super(BertSquadBenchmarkReal, self)._report_benchmark( stats=summary, wall_time_sec=wall_time_sec, min_accuracy=0, max_accuracy=1) def benchmark_1_gpu(self): """Tests BERT SQuAD model performance with 1 GPU.""" self._setup() self.num_gpus = 1 FLAGS.model_dir = self._get_model_dir('benchmark_1_gpu_squad') FLAGS.train_batch_size = 4 self._run_and_report_benchmark() def benchmark_1_gpu_eager(self): """Tests BERT SQuAD model performance with 1 GPU.""" self._setup() self.num_gpus = 1 FLAGS.model_dir = self._get_model_dir('benchmark_1_gpu_squad_eager') FLAGS.train_batch_size = 2 self._run_and_report_benchmark(run_eagerly=True) def benchmark_1_gpu_xla(self): """Tests BERT SQuAD model performance with 1 GPU with XLA.""" self._setup() self.num_gpus = 1 FLAGS.model_dir = self._get_model_dir('benchmark_1_gpu_xla_squad') # XLA runs out of memory when running with batch size 4. FLAGS.train_batch_size = 3 FLAGS.enable_xla = True self._run_and_report_benchmark() def benchmark_1_gpu_no_dist_strat(self): """Tests BERT SQuAD model performance with 1 GPU without DS.""" self._setup() self.num_gpus = 1 FLAGS.model_dir = self._get_model_dir('benchmark_1_gpu_no_dist_strat_squad') FLAGS.train_batch_size = 4 self._run_and_report_benchmark(ds_type='off') def benchmark_1_gpu_eager_no_dist_strat(self): """Tests BERT SQuAD model performance with 1 GPU with eager execution.""" self._setup() self.num_gpus = 1 FLAGS.model_dir = self._get_model_dir( 'benchmark_1_gpu_eager_no_dist_strat_squad') FLAGS.train_batch_size = 4 self._run_and_report_benchmark(ds_type='off', run_eagerly=True) @owner_utils.Owner('tf-model-garden') def benchmark_8_gpu(self): """Tests BERT SQuAD model performance with 8 GPUs.""" self._setup() self.num_gpus = 8 FLAGS.model_dir = self._get_model_dir('benchmark_8_gpu_squad') FLAGS.train_batch_size = 24 FLAGS.tf_gpu_thread_mode = 'gpu_private' self._run_and_report_benchmark() def benchmark_1_gpu_fp16_eager(self): """Tests BERT SQuAD model performance with 1 GPU and FP16.""" self._setup() self.num_gpus = 1 FLAGS.model_dir = self._get_model_dir('benchmark_1_gpu_squad_fp16_eager') FLAGS.train_batch_size = 4 FLAGS.dtype = 'fp16' FLAGS.loss_scale = 'dynamic' self._run_and_report_benchmark(run_eagerly=True) def benchmark_1_gpu_fp16(self): """Tests BERT SQuAD model performance with 1 GPU and FP16.""" self._setup() self.num_gpus = 1 FLAGS.model_dir = self._get_model_dir('benchmark_1_gpu_squad_fp16') FLAGS.train_batch_size = 4 FLAGS.dtype = 'fp16' FLAGS.loss_scale = 'dynamic' self._run_and_report_benchmark() def benchmark_1_gpu_xla_fp16(self): """Tests BERT SQuAD model performance with 1 GPU with XLA and FP16.""" self._setup() self.num_gpus = 1 FLAGS.model_dir = self._get_model_dir('benchmark_1_gpu_xla_squad_fp16') FLAGS.train_batch_size = 4 FLAGS.enable_xla = True FLAGS.dtype = 'fp16' FLAGS.loss_scale = 'dynamic' self._run_and_report_benchmark() def benchmark_8_gpu_fp16(self): """Tests BERT SQuAD model performance with 8 GPUs.""" self._setup() self.num_gpus = 8 FLAGS.model_dir = self._get_model_dir('benchmark_8_gpu_squad_fp16') FLAGS.train_batch_size = 32 FLAGS.dtype = 'fp16' FLAGS.loss_scale = 'dynamic' FLAGS.tf_gpu_thread_mode = 'gpu_private' self._run_and_report_benchmark() def benchmark_8_gpu_xla_fp16(self): """Tests BERT SQuAD model performance with 8 GPUs with XLA.""" self._setup() self.num_gpus = 8 FLAGS.model_dir = self._get_model_dir('benchmark_8_gpu_squad_fp16') FLAGS.train_batch_size = 32 FLAGS.enable_xla = True FLAGS.dtype = 'fp16' FLAGS.loss_scale = 'dynamic' self._run_and_report_benchmark() def benchmark_8_gpu_xla_tf32(self): """Tests BERT SQuAD model performance with 8 GPUs with XLA using TF32.""" self._setup() self.num_gpus = 8 FLAGS.model_dir = self._get_model_dir('benchmark_8_gpu_xla_tf32') FLAGS.train_batch_size = 32 FLAGS.enable_xla = True FLAGS.loss_scale = 'dynamic' self._run_and_report_benchmark() def benchmark_8_gpu_xla_fp32_no_tf32(self): """Tests BERT SQuAD model performance with 8 GPUs with XLA using FP32.""" self._setup() tf.config.experimental.enable_tensor_float_32_execution(False) self.num_gpus = 8 FLAGS.model_dir = self._get_model_dir('benchmark_8_gpu_xla_fp32_no_tf32') FLAGS.train_batch_size = 32 FLAGS.enable_xla = True FLAGS.loss_scale = 'dynamic' self._run_and_report_benchmark() @owner_utils.Owner('tf-model-garden') def benchmark_2x2_tpu(self): """Tests BERT SQuAD model performance with 2x2 TPU.""" self._setup() FLAGS.model_dir = self._get_model_dir('benchmark_2x2_tpu') FLAGS.train_batch_size = 48 FLAGS.predict_batch_size = 48 FLAGS.mode = 'train' FLAGS.learning_rate = 8e-5 FLAGS.num_train_epochs = 1 FLAGS.steps_per_loop = 100 FLAGS.do_lower_case = True FLAGS.init_checkpoint = PRETRAINED_CHECKPOINT_PATH self._run_and_report_benchmark() class BertSquadAccuracy(BertSquadBenchmarkBase): """Short accuracy test for BERT SQuAD model. Tests BERT SQuAD accuracy. The naming convention of below test cases follow `benchmark_(number of gpus)_gpu` format for GPUs and `benchmark_(topology)_tpu` format for TPUs. """ def __init__(self, output_dir=None, tpu=None, **kwargs): super(BertSquadAccuracy, self).__init__( output_dir=output_dir, tpu=tpu, **kwargs) def _setup(self): """Sets up the benchmark and SQuAD flags.""" super(BertSquadAccuracy, self)._setup() FLAGS.train_data_path = SQUAD_TRAIN_DATA_PATH FLAGS.predict_file = SQUAD_PREDICT_FILE FLAGS.vocab_file = SQUAD_VOCAB_FILE FLAGS.input_meta_data_path = SQUAD_FULL_INPUT_META_DATA_PATH FLAGS.bert_config_file = MODEL_CONFIG_FILE_PATH FLAGS.init_checkpoint = PRETRAINED_CHECKPOINT_PATH FLAGS.num_train_epochs = 2 FLAGS.steps_per_loop = 100 @benchmark_wrappers.enable_runtime_flags def _run_and_report_benchmark(self, run_eagerly=False, ds_type='mirrored'): """Runs the benchmark and reports various metrics.""" start_time_sec = time.time() self._train_squad(run_eagerly=run_eagerly, ds_type=ds_type) self._evaluate_squad(ds_type=ds_type) wall_time_sec = time.time() - start_time_sec summary = self._read_training_summary_from_file() summary['eval_metrics'] = self.eval_metrics summary['start_time_sec'] = start_time_sec super(BertSquadAccuracy, self)._report_benchmark( stats=summary, wall_time_sec=wall_time_sec, min_accuracy=0.900, max_accuracy=0.920) def benchmark_1_gpu_eager(self): """Tests BERT SQuAD model accuracy with 1 GPU with eager execution.""" self._setup() self.num_gpus = 1 FLAGS.model_dir = self._get_model_dir('benchmark_1_gpu_squad_eager') FLAGS.train_batch_size = 4 self._run_and_report_benchmark(ds_type='off', run_eagerly=True) @owner_utils.Owner('tf-model-garden') def benchmark_8_gpu(self): """Tests BERT SQuAD model accuracy with 8 GPUs.""" self._setup() self.num_gpus = 8 FLAGS.model_dir = self._get_model_dir('benchmark_8_gpu_squad') FLAGS.train_batch_size = 24 FLAGS.tf_gpu_thread_mode = 'gpu_private' self._run_and_report_benchmark() def benchmark_8_gpu_fp16(self): """Tests BERT SQuAD model accuracy with 8 GPUs and FP16.""" self._setup() self.num_gpus = 8 FLAGS.model_dir = self._get_model_dir('benchmark_8_gpu_squad_fp16') FLAGS.train_batch_size = 32 FLAGS.dtype = 'fp16' FLAGS.loss_scale = 'dynamic' FLAGS.tf_gpu_thread_mode = 'gpu_private' self._run_and_report_benchmark() def benchmark_8_gpu_xla(self): """Tests BERT SQuAD model accuracy with 8 GPUs.""" self._setup() self.num_gpus = 8 FLAGS.model_dir = self._get_model_dir('benchmark_8_gpu_squad_xla') FLAGS.train_batch_size = 32 FLAGS.enable_xla = True FLAGS.tf_gpu_thread_mode = 'gpu_private' self._run_and_report_benchmark() @owner_utils.Owner('tf-model-garden') def benchmark_2x2_tpu(self): """Tests BERT SQuAD model accuracy with 2x2 TPU.""" self._setup() FLAGS.model_dir = self._get_model_dir('benchmark_2x2_tpu') FLAGS.train_batch_size = 48 self._run_and_report_benchmark() class BertSquadMultiWorkerAccuracy(BertSquadBenchmarkBase): """BERT SQuAD distributed accuracy tests with multiple workers.""" def __init__(self, output_dir=None, tpu=None, **kwargs): super(BertSquadMultiWorkerAccuracy, self).__init__( output_dir=output_dir, tpu=tpu, **kwargs) def _setup(self): """Sets up the benchmark and SQuAD flags.""" super(BertSquadMultiWorkerAccuracy, self)._setup() FLAGS.train_data_path = SQUAD_TRAIN_DATA_PATH FLAGS.predict_file = SQUAD_PREDICT_FILE FLAGS.vocab_file = SQUAD_VOCAB_FILE FLAGS.input_meta_data_path = SQUAD_FULL_INPUT_META_DATA_PATH FLAGS.bert_config_file = MODEL_CONFIG_FILE_PATH FLAGS.init_checkpoint = PRETRAINED_CHECKPOINT_PATH FLAGS.num_train_epochs = 2 FLAGS.steps_per_loop = 100 @benchmark_wrappers.enable_runtime_flags def _run_and_report_benchmark(self, use_ds=True, run_eagerly=False): """Runs the benchmark and reports various metrics.""" start_time_sec = time.time() self._train_squad(run_eagerly=run_eagerly, ds_type='multi_worker_mirrored') self._evaluate_squad(ds_type='multi_worker_mirrored') wall_time_sec = time.time() - start_time_sec summary = self._read_training_summary_from_file() summary['eval_metrics'] = self.eval_metrics super(BertSquadMultiWorkerAccuracy, self)._report_benchmark( stats=summary, wall_time_sec=wall_time_sec, min_accuracy=0.900, max_accuracy=0.920) def _benchmark_common(self, num_workers, all_reduce_alg): """Common to all benchmarks in this class.""" self._setup() num_gpus = 8 FLAGS.num_gpus = num_gpus FLAGS.dtype = 'fp16' FLAGS.enable_xla = False FLAGS.distribution_strategy = 'multi_worker_mirrored' FLAGS.tf_gpu_thread_mode = 'gpu_private' FLAGS.datasets_num_private_threads = 32 FLAGS.model_dir = self._get_model_dir( 'benchmark_8_gpu_{}_worker_fp16_{}_tweaked'.format( num_workers, all_reduce_alg)) FLAGS.train_batch_size = 4 * num_gpus * num_workers FLAGS.all_reduce_alg = all_reduce_alg self._run_and_report_benchmark() def benchmark_eager_8_gpu_2_workers_fp16_ring_tweaked(self): """8 GPUs per worker, 2 workers, fp16, ring all-reduce.""" self._benchmark_common(num_workers=2, all_reduce_alg='ring') def benchmark_eager_8_gpu_2_workers_fp16_nccl_tweaked(self): """8 GPUs per worker, 2 workers, fp16, nccl all-reduce.""" self._benchmark_common(num_workers=2, all_reduce_alg='nccl') def benchmark_8_gpu_8_workers_fp16_ring_tweaked(self): """8 GPUs per worker, 8 workers, fp16, ring all-reduce.""" self._benchmark_common(num_workers=8, all_reduce_alg='ring') def benchmark_8_gpu_8_workers_fp16_nccl_tweaked(self): """8 GPUs per worker, 8 workers, fp16, nccl all-reduce.""" self._benchmark_common(num_workers=8, all_reduce_alg='nccl') class BertSquadMultiWorkerBenchmark(BertSquadBenchmarkBase): """BERT SQuAD distributed benchmark tests with multiple workers.""" def __init__(self, output_dir=TMP_DIR, tpu=None, **kwargs): super(BertSquadMultiWorkerBenchmark, self).__init__( output_dir=output_dir, tpu=tpu, **kwargs) def _setup(self): """Sets up the benchmark and SQuAD flags.""" super(BertSquadMultiWorkerBenchmark, self)._setup() FLAGS.train_data_path = SQUAD_TRAIN_DATA_PATH FLAGS.predict_file = SQUAD_PREDICT_FILE FLAGS.vocab_file = SQUAD_VOCAB_FILE FLAGS.input_meta_data_path = SQUAD_FULL_INPUT_META_DATA_PATH FLAGS.bert_config_file = MODEL_CONFIG_FILE_PATH FLAGS.num_train_epochs = 1 FLAGS.steps_per_loop = 100 @benchmark_wrappers.enable_runtime_flags def _run_and_report_benchmark(self, use_ds=True, run_eagerly=False): """Runs the benchmark and reports various metrics.""" if FLAGS.train_batch_size <= 4 * 8: FLAGS.input_meta_data_path = SQUAD_LONG_INPUT_META_DATA_PATH else: FLAGS.input_meta_data_path = SQUAD_FULL_INPUT_META_DATA_PATH start_time_sec = time.time() self._train_squad(run_eagerly=run_eagerly, ds_type='multi_worker_mirrored') wall_time_sec = time.time() - start_time_sec summary = self._read_training_summary_from_file() summary['start_time_sec'] = start_time_sec super(BertSquadMultiWorkerBenchmark, self)._report_benchmark( stats=summary, wall_time_sec=wall_time_sec, min_accuracy=0, max_accuracy=1) def _benchmark_common(self, num_workers, all_reduce_alg): """Common to all benchmarks in this class.""" self._setup() num_gpus = 8 FLAGS.num_gpus = num_gpus FLAGS.dtype = 'fp16' FLAGS.enable_xla = False FLAGS.distribution_strategy = 'multi_worker_mirrored' FLAGS.tf_gpu_thread_mode = 'gpu_private' FLAGS.datasets_num_private_threads = 32 FLAGS.model_dir = self._get_model_dir( 'benchmark_8_gpu_{}_worker_fp16_{}_tweaked'.format( num_workers, all_reduce_alg)) FLAGS.train_batch_size = 4 * num_gpus * num_workers FLAGS.all_reduce_alg = all_reduce_alg self._run_and_report_benchmark() def benchmark_8_gpu_1_worker_fp16_ring_tweaked(self): """8 GPUs per worker, 1 worker, fp16, ring all-reduce.""" self._benchmark_common(num_workers=1, all_reduce_alg='ring') def benchmark_8_gpu_1_worker_fp16_nccl_tweaked(self): """8 GPUs per worker, 1 worker, fp16, nccl all-reduce.""" self._benchmark_common(num_workers=1, all_reduce_alg='nccl') def benchmark_8_gpu_2_workers_fp16_ring_tweaked(self): """8 GPUs per worker, 2 workers, fp16, ring all-reduce.""" self._benchmark_common(num_workers=2, all_reduce_alg='ring') def benchmark_8_gpu_2_workers_fp16_nccl_tweaked(self): """8 GPUs per worker, 2 workers, fp16, nccl all-reduce.""" self._benchmark_common(num_workers=2, all_reduce_alg='nccl') def benchmark_8_gpu_8_workers_fp16_ring_tweaked(self): """8 GPUs per worker, 8 workers, fp16, ring all-reduce.""" self._benchmark_common(num_workers=8, all_reduce_alg='ring') def benchmark_8_gpu_8_workers_fp16_nccl_tweaked(self): """8 GPUs per worker, 8 workers, fp16, nccl all-reduce.""" self._benchmark_common(num_workers=8, all_reduce_alg='nccl') if __name__ == '__main__': tf.test.main()