# Copyright 2018 The TensorFlow Authors All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Wrapper for creating the ant environment in gym_mujoco.""" import math import numpy as np from gym import utils from gym.envs.mujoco import mujoco_env class AntEnv(mujoco_env.MujocoEnv, utils.EzPickle): FILE = "ant.xml" def __init__(self, file_path=None, expose_all_qpos=True, expose_body_coms=None, expose_body_comvels=None): self._expose_all_qpos = expose_all_qpos self._expose_body_coms = expose_body_coms self._expose_body_comvels = expose_body_comvels self._body_com_indices = {} self._body_comvel_indices = {} mujoco_env.MujocoEnv.__init__(self, file_path, 5) utils.EzPickle.__init__(self) @property def physics(self): return self.model def _step(self, a): return self.step(a) def step(self, a): xposbefore = self.get_body_com("torso")[0] self.do_simulation(a, self.frame_skip) xposafter = self.get_body_com("torso")[0] forward_reward = (xposafter - xposbefore) / self.dt ctrl_cost = .5 * np.square(a).sum() survive_reward = 1.0 reward = forward_reward - ctrl_cost + survive_reward state = self.state_vector() done = False ob = self._get_obs() return ob, reward, done, dict( reward_forward=forward_reward, reward_ctrl=-ctrl_cost, reward_survive=survive_reward) def _get_obs(self): # No cfrc observation if self._expose_all_qpos: obs = np.concatenate([ self.physics.data.qpos.flat[:15], # Ensures only ant obs. self.physics.data.qvel.flat[:14], ]) else: obs = np.concatenate([ self.physics.data.qpos.flat[2:15], self.physics.data.qvel.flat[:14], ]) if self._expose_body_coms is not None: for name in self._expose_body_coms: com = self.get_body_com(name) if name not in self._body_com_indices: indices = range(len(obs), len(obs) + len(com)) self._body_com_indices[name] = indices obs = np.concatenate([obs, com]) if self._expose_body_comvels is not None: for name in self._expose_body_comvels: comvel = self.get_body_comvel(name) if name not in self._body_comvel_indices: indices = range(len(obs), len(obs) + len(comvel)) self._body_comvel_indices[name] = indices obs = np.concatenate([obs, comvel]) return obs def reset_model(self): qpos = self.init_qpos + self.np_random.uniform( size=self.model.nq, low=-.1, high=.1) qvel = self.init_qvel + self.np_random.randn(self.model.nv) * .1 # Set everything other than ant to original position and 0 velocity. qpos[15:] = self.init_qpos[15:] qvel[14:] = 0. self.set_state(qpos, qvel) return self._get_obs() def viewer_setup(self): self.viewer.cam.distance = self.model.stat.extent * 0.5