# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Regression using the DNNRegressor Estimator.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import argparse import tensorflow as tf import automobile_data parser = argparse.ArgumentParser() parser.add_argument('--batch_size', default=100, type=int, help='batch size') parser.add_argument('--train_steps', default=5000, type=int, help='number of training steps') parser.add_argument('--price_norm_factor', default=1000., type=float, help='price normalization factor') def main(argv): """Builds, trains, and evaluates the model.""" args = parser.parse_args(argv[1:]) (train_x,train_y), (test_x, test_y) = automobile_data.load_data() train_y /= args.price_norm_factor test_y /= args.price_norm_factor # Provide the training input dataset. train_input_fn = automobile_data.make_dataset(args.batch_size, train_x, train_y, True, 1000) # Provide the validation input dataset. test_input_fn = automobile_data.make_dataset(args.batch_size, test_x, test_y) # Use the same categorical columns as in `linear_regression_categorical` body_style_vocab = ["hardtop", "wagon", "sedan", "hatchback", "convertible"] body_style_column = tf.feature_column.categorical_column_with_vocabulary_list( key="body-style", vocabulary_list=body_style_vocab) make_column = tf.feature_column.categorical_column_with_hash_bucket( key="make", hash_bucket_size=50) feature_columns = [ tf.feature_column.numeric_column(key="curb-weight"), tf.feature_column.numeric_column(key="highway-mpg"), # Since this is a DNN model, categorical columns must be converted from # sparse to dense. # Wrap them in an `indicator_column` to create a # one-hot vector from the input. tf.feature_column.indicator_column(body_style_column), # Or use an `embedding_column` to create a trainable vector for each # index. tf.feature_column.embedding_column(make_column, dimension=3), ] # Build a DNNRegressor, with 2x20-unit hidden layers, with the feature columns # defined above as input. model = tf.estimator.DNNRegressor( hidden_units=[20, 20], feature_columns=feature_columns) # Train the model. # By default, the Estimators log output every 100 steps. model.train(input_fn=train_input_fn, steps=args.train_steps) # Evaluate how the model performs on data it has not yet seen. eval_result = model.evaluate(input_fn=test_input_fn) # The evaluation returns a Python dictionary. The "average_loss" key holds the # Mean Squared Error (MSE). average_loss = eval_result["average_loss"] # Convert MSE to Root Mean Square Error (RMSE). print("\n" + 80 * "*") print("\nRMS error for the test set: ${:.0f}" .format(args.price_norm_factor * average_loss**0.5)) print() if __name__ == "__main__": # The Estimator periodically generates "INFO" logs; make these logs visible. tf.logging.set_verbosity(tf.logging.INFO) tf.app.run(main=main)