# Copyright 2018 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """The strategy to play each move with MCTS.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import os import random import sys import time import coords import go from mcts import MCTSNode import numpy as np import sgf_wrapper def time_recommendation(move_num, seconds_per_move=5, time_limit=15*60, decay_factor=0.98): """ Given current move number and "desired" seconds per move, return how much time should actually be used. To be used specifically for CGOS time controls, which are absolute 15 minute time. The strategy is to spend the maximum time possible using seconds_per_move, and then switch to an exponentially decaying time usage, calibrated so that we have enough time for an infinite number of moves. """ # divide by two since you only play half the moves in a game. player_move_num = move_num / 2 # sum of geometric series maxes out at endgame_time seconds. endgame_time = seconds_per_move / (1 - decay_factor) if endgame_time > time_limit: # there is so little main time that we're already in "endgame" mode. base_time = time_limit * (1 - decay_factor) return base_time * decay_factor ** player_move_num # leave over endgame_time seconds for the end, and play at seconds_per_move # for as long as possible core_time = time_limit - endgame_time core_moves = core_time / seconds_per_move if player_move_num < core_moves: return seconds_per_move else: return seconds_per_move * decay_factor ** (player_move_num - core_moves) def _get_temperature_cutoff(board_size): # When to do deterministic move selection. ~30 moves on a 19x19, ~8 on 9x9 return int((board_size * board_size) / 12) class MCTSPlayerMixin(object): # If 'simulations_per_move' is nonzero, it will perform that many reads # before playing. Otherwise, it uses 'seconds_per_move' of wall time' def __init__(self, board_size, network, seconds_per_move=5, simulations_per_move=0, resign_threshold=-0.90, verbosity=0, two_player_mode=False, num_parallel=8): self.board_size = board_size self.network = network self.seconds_per_move = seconds_per_move self.simulations_per_move = simulations_per_move self.verbosity = verbosity self.two_player_mode = two_player_mode if two_player_mode: self.temp_threshold = -1 else: self.temp_threshold = _get_temperature_cutoff(board_size) self.num_parallel = num_parallel self.qs = [] self.comments = [] self.searches_pi = [] self.root = None self.result = 0 self.result_string = None self.resign_threshold = -abs(resign_threshold) super(MCTSPlayerMixin, self).__init__(board_size) def initialize_game(self, position=None): if position is None: position = go.Position(self.board_size) self.root = MCTSNode(self.board_size, position) self.result = 0 self.result_string = None self.comments = [] self.searches_pi = [] self.qs = [] def suggest_move(self, position): """ Used for playing a single game. For parallel play, use initialize_move, select_leaf, incorporate_results, and pick_move """ start = time.time() if self.simulations_per_move == 0: while time.time() - start < self.seconds_per_move: self.tree_search() else: current_readouts = self.root.N while self.root.N < current_readouts + self.simulations_per_move: self.tree_search() if self.verbosity > 0: print("%d: Searched %d times in %s seconds\n\n" % ( position.n, self.simulations_per_move, time.time() - start), file=sys.stderr) # print some stats on anything with probability > 1% if self.verbosity > 2: print(self.root.describe(), file=sys.stderr) print('\n\n', file=sys.stderr) if self.verbosity > 3: print(self.root.position, file=sys.stderr) return self.pick_move() def play_move(self, c): """ Notable side effects: - finalizes the probability distribution according to this roots visit counts into the class' running tally, `searches_pi` - Makes the node associated with this move the root, for future `inject_noise` calls. """ if not self.two_player_mode: self.searches_pi.append( self.root.children_as_pi(self.root.position.n < self.temp_threshold)) self.qs.append(self.root.Q) # Save our resulting Q. self.comments.append(self.root.describe()) self.root = self.root.maybe_add_child(coords.to_flat(self.board_size, c)) self.position = self.root.position # for showboard del self.root.parent.children return True # GTP requires positive result. def pick_move(self): """Picks a move to play, based on MCTS readout statistics. Highest N is most robust indicator. In the early stage of the game, pick a move weighted by visit count; later on, pick the absolute max.""" if self.root.position.n > self.temp_threshold: fcoord = np.argmax(self.root.child_N) else: cdf = self.root.child_N.cumsum() cdf /= cdf[-1] selection = random.random() fcoord = cdf.searchsorted(selection) assert self.root.child_N[fcoord] != 0 return coords.from_flat(self.board_size, fcoord) def tree_search(self, num_parallel=None): if num_parallel is None: num_parallel = self.num_parallel leaves = [] failsafe = 0 while len(leaves) < num_parallel and failsafe < num_parallel * 2: failsafe += 1 leaf = self.root.select_leaf() if self.verbosity >= 4: print(self.show_path_to_root(leaf)) # if game is over, override the value estimate with the true score if leaf.is_done(): value = 1 if leaf.position.score() > 0 else -1 leaf.backup_value(value, up_to=self.root) continue leaf.add_virtual_loss(up_to=self.root) leaves.append(leaf) if leaves: move_probs, values = self.network.run_many( [leaf.position for leaf in leaves]) for leaf, move_prob, value in zip(leaves, move_probs, values): leaf.revert_virtual_loss(up_to=self.root) leaf.incorporate_results(move_prob, value, up_to=self.root) def show_path_to_root(self, node): MAX_DEPTH = (self.board_size ** 2) * 1.4 # 505 moves for 19x19, 113 for 9x9 pos = node.position diff = node.position.n - self.root.position.n if len(pos.recent) == 0: return def fmt(move): return "{}-{}".format('b' if move.color == 1 else 'w', coords.to_kgs(self.board_size, move.move)) path = " ".join(fmt(move) for move in pos.recent[-diff:]) if node.position.n >= MAX_DEPTH: path += " (depth cutoff reached) %0.1f" % node.position.score() elif node.position.is_game_over(): path += " (game over) %0.1f" % node.position.score() return path def should_resign(self): """Returns true if the player resigned. No further moves should be played. """ return self.root.Q_perspective < self.resign_threshold def set_result(self, winner, was_resign): self.result = winner if was_resign: string = "B+R" if winner == go.BLACK else "W+R" else: string = self.root.position.result_string() self.result_string = string def to_sgf(self, use_comments=True): assert self.result_string is not None pos = self.root.position if use_comments: comments = self.comments or ['No comments.'] comments[0] = ("Resign Threshold: %0.3f\n" % self.resign_threshold) + comments[0] else: comments = [] return sgf_wrapper.make_sgf( self.board_size, pos.recent, self.result_string, white_name=os.path.basename(self.network.save_file) or "Unknown", black_name=os.path.basename(self.network.save_file) or "Unknown", comments=comments) def is_done(self): return self.result != 0 or self.root.is_done() def extract_data(self): assert len(self.searches_pi) == self.root.position.n assert self.result != 0 for pwc, pi in zip(go.replay_position( self.board_size, self.root.position, self.result), self.searches_pi): yield pwc.position, pi, pwc.result def chat(self, msg_type, sender, text): default_response = ( "Supported commands are 'winrate', 'nextplay', 'fortune', and 'help'.") if self.root is None or self.root.position.n == 0: return "I'm not playing right now. " + default_response if 'winrate' in text.lower(): wr = (abs(self.root.Q) + 1.0) / 2.0 color = "Black" if self.root.Q > 0 else "White" return "{:s} {:.2f}%".format(color, wr * 100.0) elif 'nextplay' in text.lower(): return "I'm thinking... " + self.root.most_visited_path() elif 'fortune' in text.lower(): return "You're feeling lucky!" elif 'help' in text.lower(): return "I can't help much with go -- try ladders! Otherwise: {}".format( default_response) else: return default_response class CGOSPlayerMixin(MCTSPlayerMixin): def suggest_move(self, position): self.seconds_per_move = time_recommendation(position.n) return super().suggest_move(position)