# Copyright 2021 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Functions and classes related to training performance.""" from absl import logging import tensorflow as tf def configure_optimizer(optimizer, use_float16=False, use_graph_rewrite=False, loss_scale='dynamic', use_experimental_api=False): """Configures optimizer object with performance options.""" if use_experimental_api: logging.warning('Passing use_experimental_api=True is deprecated. The ' 'argument will be removed in the future.') if use_float16: # TODO(b/171936854): Move all methods to non-experimental api. if use_experimental_api: # Wraps optimizer with a LossScaleOptimizer. This is done automatically # in compile() with the "mixed_float16" policy, but since we do not call # compile(), we must wrap the optimizer manually. optimizer = ( tf.keras.mixed_precision.experimental.LossScaleOptimizer( optimizer, loss_scale=loss_scale)) elif loss_scale == 'dynamic': optimizer = tf.keras.mixed_precision.LossScaleOptimizer(optimizer) else: # loss_scale is a number. We interpret that as a fixed loss scale. optimizer = tf.keras.mixed_precision.LossScaleOptimizer( optimizer, dynamic=False, initial_scale=loss_scale) if use_graph_rewrite: # Note: the model dtype must be 'float32', which will ensure # tf.keras.mixed_precision and enable_mixed_precision_graph_rewrite do not # double up. optimizer = ( tf.compat.v1.mixed_precision.enable_mixed_precision_graph_rewrite( optimizer)) return optimizer def set_mixed_precision_policy(dtype, loss_scale=None, use_experimental_api=False): """Sets mix precision policy.""" if use_experimental_api: logging.warning('Passing use_experimental_api=True is deprecated. The ' 'argument will be removed in the future.') assert use_experimental_api or loss_scale is None, ( 'loss_scale cannot be specified if use_experimental_api is False. If the ' 'non-experimental API is used, specify the loss scaling configuration ' 'when creating the LossScaleOptimizer instead.' ) if dtype == tf.float16: # TODO(b/171936854): Move all methods to non-experimental api. if use_experimental_api: policy = tf.keras.mixed_precision.experimental.Policy( 'mixed_float16', loss_scale=loss_scale) tf.keras.mixed_precision.experimental.set_policy(policy) else: tf.keras.mixed_precision.set_global_policy('mixed_float16') elif dtype == tf.bfloat16: if use_experimental_api: tf.keras.mixed_precision.experimental.set_policy('mixed_bfloat16') else: tf.keras.mixed_precision.set_global_policy('mixed_bfloat16') elif dtype == tf.float32: if use_experimental_api: tf.keras.mixed_precision.experimental.set_policy('float32') else: tf.keras.mixed_precision.set_global_policy('float32') else: raise ValueError('Unexpected dtype: %s' % dtype)