# Copyright 2018 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for benchmark logger.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import json import os import tempfile import tensorflow as tf # pylint: disable=g-bad-import-order from official.utils.logging import logger class BenchmarkLoggerTest(tf.test.TestCase): def tearDown(self): super(BenchmarkLoggerTest, self).tearDown() tf.gfile.DeleteRecursively(self.get_temp_dir()) def test_create_logging_dir(self): non_exist_temp_dir = os.path.join(self.get_temp_dir(), "unknown_dir") self.assertFalse(tf.gfile.IsDirectory(non_exist_temp_dir)) logger.BenchmarkLogger(non_exist_temp_dir) self.assertTrue(tf.gfile.IsDirectory(non_exist_temp_dir)) def test_log_metric(self): log_dir = tempfile.mkdtemp(dir=self.get_temp_dir()) log = logger.BenchmarkLogger(log_dir) log.log_metric("accuracy", 0.999, global_step=1e4, extras={"name": "value"}) metric_log = os.path.join(log_dir, "metric.log") self.assertTrue(tf.gfile.Exists(metric_log)) with tf.gfile.GFile(metric_log) as f: metric = json.loads(f.readline()) self.assertEqual(metric["name"], "accuracy") self.assertEqual(metric["value"], 0.999) self.assertEqual(metric["unit"], None) self.assertEqual(metric["global_step"], 1e4) self.assertEqual(metric["extras"], {"name": "value"}) def test_log_multiple_metrics(self): log_dir = tempfile.mkdtemp(dir=self.get_temp_dir()) log = logger.BenchmarkLogger(log_dir) log.log_metric("accuracy", 0.999, global_step=1e4, extras={"name": "value"}) log.log_metric("loss", 0.02, global_step=1e4) metric_log = os.path.join(log_dir, "metric.log") self.assertTrue(tf.gfile.Exists(metric_log)) with tf.gfile.GFile(metric_log) as f: accuracy = json.loads(f.readline()) self.assertEqual(accuracy["name"], "accuracy") self.assertEqual(accuracy["value"], 0.999) self.assertEqual(accuracy["unit"], None) self.assertEqual(accuracy["global_step"], 1e4) self.assertEqual(accuracy["extras"], {"name": "value"}) loss = json.loads(f.readline()) self.assertEqual(loss["name"], "loss") self.assertEqual(loss["value"], 0.02) self.assertEqual(loss["unit"], None) self.assertEqual(loss["global_step"], 1e4) def test_log_non_nubmer_value(self): log_dir = tempfile.mkdtemp(dir=self.get_temp_dir()) log = logger.BenchmarkLogger(log_dir) const = tf.constant(1) log.log_metric("accuracy", const) metric_log = os.path.join(log_dir, "metric.log") self.assertFalse(tf.gfile.Exists(metric_log)) if __name__ == "__main__": tf.test.main()