# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Contains definitions for Residual Networks. Residual networks ('v1' ResNets) were originally proposed in: [1] Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun Deep Residual Learning for Image Recognition. arXiv:1512.03385 The full preactivation 'v2' ResNet variant was introduced by: [2] Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun Identity Mappings in Deep Residual Networks. arXiv: 1603.05027 The key difference of the full preactivation 'v2' variant compared to the 'v1' variant in [1] is the use of batch normalization before every weight layer rather than after. """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import tensorflow as tf _BATCH_NORM_DECAY = 0.997 _BATCH_NORM_EPSILON = 1e-5 DEFAULT_VERSION = 2 ################################################################################ # Convenience functions for building the ResNet model. ################################################################################ def batch_norm(inputs, training, data_format): """Performs a batch normalization using a standard set of parameters.""" # We set fused=True for a significant performance boost. See # https://www.tensorflow.org/performance/performance_guide#common_fused_ops return tf.layers.batch_normalization( inputs=inputs, axis=1 if data_format == 'channels_first' else 3, momentum=_BATCH_NORM_DECAY, epsilon=_BATCH_NORM_EPSILON, center=True, scale=True, training=training, fused=True) def fixed_padding(inputs, kernel_size, data_format): """Pads the input along the spatial dimensions independently of input size. Args: inputs: A tensor of size [batch, channels, height_in, width_in] or [batch, height_in, width_in, channels] depending on data_format. kernel_size: The kernel to be used in the conv2d or max_pool2d operation. Should be a positive integer. data_format: The input format ('channels_last' or 'channels_first'). Returns: A tensor with the same format as the input with the data either intact (if kernel_size == 1) or padded (if kernel_size > 1). """ pad_total = kernel_size - 1 pad_beg = pad_total // 2 pad_end = pad_total - pad_beg if data_format == 'channels_first': padded_inputs = tf.pad(inputs, [[0, 0], [0, 0], [pad_beg, pad_end], [pad_beg, pad_end]]) else: padded_inputs = tf.pad(inputs, [[0, 0], [pad_beg, pad_end], [pad_beg, pad_end], [0, 0]]) return padded_inputs def conv2d_fixed_padding(inputs, filters, kernel_size, strides, data_format): """Strided 2-D convolution with explicit padding.""" # The padding is consistent and is based only on `kernel_size`, not on the # dimensions of `inputs` (as opposed to using `tf.layers.conv2d` alone). if strides > 1: inputs = fixed_padding(inputs, kernel_size, data_format) return tf.layers.conv2d( inputs=inputs, filters=filters, kernel_size=kernel_size, strides=strides, padding=('SAME' if strides == 1 else 'VALID'), use_bias=False, kernel_initializer=tf.variance_scaling_initializer(), data_format=data_format) ################################################################################ # ResNet block definitions. ################################################################################ def _building_block_v1(inputs, filters, training, projection_shortcut, strides, data_format): """A single block for ResNet v1, without a bottleneck. Convolution then batch normalization then ReLU as described by: Deep Residual Learning for Image Recognition https://arxiv.org/pdf/1512.03385.pdf by Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun, Dec 2015. Args: inputs: A tensor of size [batch, channels, height_in, width_in] or [batch, height_in, width_in, channels] depending on data_format. filters: The number of filters for the convolutions. training: A Boolean for whether the model is in training or inference mode. Needed for batch normalization. projection_shortcut: The function to use for projection shortcuts (typically a 1x1 convolution when downsampling the input). strides: The block's stride. If greater than 1, this block will ultimately downsample the input. data_format: The input format ('channels_last' or 'channels_first'). Returns: The output tensor of the block; shape should match inputs. """ shortcut = inputs if projection_shortcut is not None: shortcut = projection_shortcut(inputs) shortcut = batch_norm(inputs=shortcut, training=training, data_format=data_format) inputs = conv2d_fixed_padding( inputs=inputs, filters=filters, kernel_size=3, strides=strides, data_format=data_format) inputs = batch_norm(inputs, training, data_format) inputs = tf.nn.relu(inputs) inputs = conv2d_fixed_padding( inputs=inputs, filters=filters, kernel_size=3, strides=1, data_format=data_format) inputs = batch_norm(inputs, training, data_format) inputs += shortcut inputs = tf.nn.relu(inputs) return inputs def _building_block_v2(inputs, filters, training, projection_shortcut, strides, data_format): """A single block for ResNet v2, without a bottleneck. Batch normalization then ReLu then convolution as described by: Identity Mappings in Deep Residual Networks https://arxiv.org/pdf/1603.05027.pdf by Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun, Jul 2016. Args: inputs: A tensor of size [batch, channels, height_in, width_in] or [batch, height_in, width_in, channels] depending on data_format. filters: The number of filters for the convolutions. training: A Boolean for whether the model is in training or inference mode. Needed for batch normalization. projection_shortcut: The function to use for projection shortcuts (typically a 1x1 convolution when downsampling the input). strides: The block's stride. If greater than 1, this block will ultimately downsample the input. data_format: The input format ('channels_last' or 'channels_first'). Returns: The output tensor of the block; shape should match inputs. """ shortcut = inputs inputs = batch_norm(inputs, training, data_format) inputs = tf.nn.relu(inputs) # The projection shortcut should come after the first batch norm and ReLU # since it performs a 1x1 convolution. if projection_shortcut is not None: shortcut = projection_shortcut(inputs) inputs = conv2d_fixed_padding( inputs=inputs, filters=filters, kernel_size=3, strides=strides, data_format=data_format) inputs = batch_norm(inputs, training, data_format) inputs = tf.nn.relu(inputs) inputs = conv2d_fixed_padding( inputs=inputs, filters=filters, kernel_size=3, strides=1, data_format=data_format) return inputs + shortcut def _bottleneck_block_v1(inputs, filters, training, projection_shortcut, strides, data_format): """A single block for ResNet v1, with a bottleneck. Similar to _building_block_v1(), except using the "bottleneck" blocks described in: Convolution then batch normalization then ReLU as described by: Deep Residual Learning for Image Recognition https://arxiv.org/pdf/1512.03385.pdf by Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun, Dec 2015. Args: inputs: A tensor of size [batch, channels, height_in, width_in] or [batch, height_in, width_in, channels] depending on data_format. filters: The number of filters for the convolutions. training: A Boolean for whether the model is in training or inference mode. Needed for batch normalization. projection_shortcut: The function to use for projection shortcuts (typically a 1x1 convolution when downsampling the input). strides: The block's stride. If greater than 1, this block will ultimately downsample the input. data_format: The input format ('channels_last' or 'channels_first'). Returns: The output tensor of the block; shape should match inputs. """ shortcut = inputs if projection_shortcut is not None: shortcut = projection_shortcut(inputs) shortcut = batch_norm(inputs=shortcut, training=training, data_format=data_format) inputs = conv2d_fixed_padding( inputs=inputs, filters=filters, kernel_size=1, strides=1, data_format=data_format) inputs = batch_norm(inputs, training, data_format) inputs = tf.nn.relu(inputs) inputs = conv2d_fixed_padding( inputs=inputs, filters=filters, kernel_size=3, strides=strides, data_format=data_format) inputs = batch_norm(inputs, training, data_format) inputs = tf.nn.relu(inputs) inputs = conv2d_fixed_padding( inputs=inputs, filters=4 * filters, kernel_size=1, strides=1, data_format=data_format) inputs = batch_norm(inputs, training, data_format) inputs += shortcut inputs = tf.nn.relu(inputs) return inputs def _bottleneck_block_v2(inputs, filters, training, projection_shortcut, strides, data_format): """A single block for ResNet v2, without a bottleneck. Similar to _building_block_v2(), except using the "bottleneck" blocks described in: Convolution then batch normalization then ReLU as described by: Deep Residual Learning for Image Recognition https://arxiv.org/pdf/1512.03385.pdf by Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun, Dec 2015. Adapted to the ordering conventions of: Batch normalization then ReLu then convolution as described by: Identity Mappings in Deep Residual Networks https://arxiv.org/pdf/1603.05027.pdf by Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun, Jul 2016. Args: inputs: A tensor of size [batch, channels, height_in, width_in] or [batch, height_in, width_in, channels] depending on data_format. filters: The number of filters for the convolutions. training: A Boolean for whether the model is in training or inference mode. Needed for batch normalization. projection_shortcut: The function to use for projection shortcuts (typically a 1x1 convolution when downsampling the input). strides: The block's stride. If greater than 1, this block will ultimately downsample the input. data_format: The input format ('channels_last' or 'channels_first'). Returns: The output tensor of the block; shape should match inputs. """ shortcut = inputs inputs = batch_norm(inputs, training, data_format) inputs = tf.nn.relu(inputs) # The projection shortcut should come after the first batch norm and ReLU # since it performs a 1x1 convolution. if projection_shortcut is not None: shortcut = projection_shortcut(inputs) inputs = conv2d_fixed_padding( inputs=inputs, filters=filters, kernel_size=1, strides=1, data_format=data_format) inputs = batch_norm(inputs, training, data_format) inputs = tf.nn.relu(inputs) inputs = conv2d_fixed_padding( inputs=inputs, filters=filters, kernel_size=3, strides=strides, data_format=data_format) inputs = batch_norm(inputs, training, data_format) inputs = tf.nn.relu(inputs) inputs = conv2d_fixed_padding( inputs=inputs, filters=4 * filters, kernel_size=1, strides=1, data_format=data_format) return inputs + shortcut def block_layer(inputs, filters, bottleneck, block_fn, blocks, strides, training, name, data_format): """Creates one layer of blocks for the ResNet model. Args: inputs: A tensor of size [batch, channels, height_in, width_in] or [batch, height_in, width_in, channels] depending on data_format. filters: The number of filters for the first convolution of the layer. bottleneck: Is the block created a bottleneck block. block_fn: The block to use within the model, either `building_block` or `bottleneck_block`. blocks: The number of blocks contained in the layer. strides: The stride to use for the first convolution of the layer. If greater than 1, this layer will ultimately downsample the input. training: Either True or False, whether we are currently training the model. Needed for batch norm. name: A string name for the tensor output of the block layer. data_format: The input format ('channels_last' or 'channels_first'). Returns: The output tensor of the block layer. """ # Bottleneck blocks end with 4x the number of filters as they start with filters_out = filters * 4 if bottleneck else filters def projection_shortcut(inputs): return conv2d_fixed_padding( inputs=inputs, filters=filters_out, kernel_size=1, strides=strides, data_format=data_format) # Only the first block per block_layer uses projection_shortcut and strides inputs = block_fn(inputs, filters, training, projection_shortcut, strides, data_format) for _ in range(1, blocks): inputs = block_fn(inputs, filters, training, None, 1, data_format) return tf.identity(inputs, name) class Model(object): """Base class for building the Resnet Model.""" def __init__(self, resnet_size, bottleneck, num_classes, num_filters, kernel_size, conv_stride, first_pool_size, first_pool_stride, second_pool_size, second_pool_stride, block_sizes, block_strides, final_size, version=DEFAULT_VERSION, data_format=None): """Creates a model for classifying an image. Args: resnet_size: A single integer for the size of the ResNet model. bottleneck: Use regular blocks or bottleneck blocks. num_classes: The number of classes used as labels. num_filters: The number of filters to use for the first block layer of the model. This number is then doubled for each subsequent block layer. kernel_size: The kernel size to use for convolution. conv_stride: stride size for the initial convolutional layer first_pool_size: Pool size to be used for the first pooling layer. If none, the first pooling layer is skipped. first_pool_stride: stride size for the first pooling layer. Not used if first_pool_size is None. second_pool_size: Pool size to be used for the second pooling layer. second_pool_stride: stride size for the final pooling layer block_sizes: A list containing n values, where n is the number of sets of block layers desired. Each value should be the number of blocks in the i-th set. block_strides: List of integers representing the desired stride size for each of the sets of block layers. Should be same length as block_sizes. final_size: The expected size of the model after the second pooling. version: Integer representing which version of the ResNet network to use. See README for details. Valid values: [1, 2] data_format: Input format ('channels_last', 'channels_first', or None). If set to None, the format is dependent on whether a GPU is available. Raises: ValueError: if invalid version is selected. """ self.resnet_size = resnet_size if not data_format: data_format = ( 'channels_first' if tf.test.is_built_with_cuda() else 'channels_last') self.resnet_version = version if version not in (1, 2): raise ValueError( 'Resnet version should be 1 or 2. See README for citations.') self.bottleneck = bottleneck if bottleneck: if version == 1: self.block_fn = _bottleneck_block_v1 else: self.block_fn = _bottleneck_block_v2 else: if version == 1: self.block_fn = _building_block_v1 else: self.block_fn = _building_block_v2 self.data_format = data_format self.num_classes = num_classes self.num_filters = num_filters self.kernel_size = kernel_size self.conv_stride = conv_stride self.first_pool_size = first_pool_size self.first_pool_stride = first_pool_stride self.second_pool_size = second_pool_size self.second_pool_stride = second_pool_stride self.block_sizes = block_sizes self.block_strides = block_strides self.final_size = final_size def __call__(self, inputs, training): """Add operations to classify a batch of input images. Args: inputs: A Tensor representing a batch of input images. training: A boolean. Set to True to add operations required only when training the classifier. Returns: A logits Tensor with shape [, self.num_classes]. """ if self.data_format == 'channels_first': # Convert the inputs from channels_last (NHWC) to channels_first (NCHW). # This provides a large performance boost on GPU. See # https://www.tensorflow.org/performance/performance_guide#data_formats inputs = tf.transpose(inputs, [0, 3, 1, 2]) inputs = conv2d_fixed_padding( inputs=inputs, filters=self.num_filters, kernel_size=self.kernel_size, strides=self.conv_stride, data_format=self.data_format) inputs = tf.identity(inputs, 'initial_conv') if self.first_pool_size: inputs = tf.layers.max_pooling2d( inputs=inputs, pool_size=self.first_pool_size, strides=self.first_pool_stride, padding='SAME', data_format=self.data_format) inputs = tf.identity(inputs, 'initial_max_pool') for i, num_blocks in enumerate(self.block_sizes): num_filters = self.num_filters * (2**i) inputs = block_layer( inputs=inputs, filters=num_filters, bottleneck=self.bottleneck, block_fn=self.block_fn, blocks=num_blocks, strides=self.block_strides[i], training=training, name='block_layer{}'.format(i + 1), data_format=self.data_format) inputs = batch_norm(inputs, training, self.data_format) inputs = tf.nn.relu(inputs) inputs = tf.layers.average_pooling2d( inputs=inputs, pool_size=self.second_pool_size, strides=self.second_pool_stride, padding='VALID', data_format=self.data_format) inputs = tf.identity(inputs, 'final_avg_pool') inputs = tf.reshape(inputs, [-1, self.final_size]) inputs = tf.layers.dense(inputs=inputs, units=self.num_classes) inputs = tf.identity(inputs, 'final_dense') return inputs