# Copyright 2020 The Orbit Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """AbstractTrainer/Evaluator implementations for standard settings.""" import abc from typing import Any, Dict, Optional, Text import dataclasses from orbit import runner from orbit.utils import loop_fns import tensorflow as tf @dataclasses.dataclass(frozen=True) class StandardTrainerOptions: """Advanced options for `orbit.StandardTrainer`. Attributes: use_tf_while_loop: A boolean indicating whether to run the training loop using a `tf.while_loop`. If `True`, `use_tf_function` must also be `True`. use_tf_function: A boolean indicating whether to apply `tf.function` to the training loop. This will only affect the body of the loop (involving `train_step`); `train_loop_begin` and `train_loop_end` will always be run in eager mode. use_tpu_summary_optimization: A boolean indicating whether to enable a performance optimization for summaries in TPUs. Writing summaries conditionally with outside compilation on TPUs can be extremely slow. If `True`, this optimization creates two `tf.function`s with two XLA programs (one with summary calls, and one without). The program with summaries runs only for one step when summaries should be recorded. """ use_tf_while_loop: bool = True use_tf_function: bool = True use_tpu_summary_optimization: bool = False def _create_train_loop_fn(train_step_fn, options: StandardTrainerOptions): """Creates a training loop from the given step function and options.""" if options.use_tf_while_loop: loop_fn = loop_fns.create_tf_while_loop_fn(train_step_fn) if options.use_tpu_summary_optimization: loop_fn = loop_fns.LoopFnWithSummaries(loop_fn) else: loop_fn = tf.function(loop_fn) else: if options.use_tf_function: train_step_fn = tf.function(train_step_fn) loop_fn = loop_fns.create_loop_fn(train_step_fn) return loop_fn class StandardTrainer(runner.AbstractTrainer, metaclass=abc.ABCMeta): """Implements the standard functionality of AbstractTrainer APIs.""" def __init__(self, train_dataset, options: StandardTrainerOptions = None): """Construct a `StandardTrainer` object. Args: train_dataset: A tf.nest-compatible structure of tf.data.Dataset or DistributedDataset. options: An `orbit.StandardTrainerOptions` instance. """ options = options or StandardTrainerOptions() if options.use_tf_while_loop and not options.use_tf_function: raise ValueError("`use_tf_while_loop=True` and `use_tf_function=False` " "is not supported") if options.use_tpu_summary_optimization and not options.use_tf_while_loop: raise ValueError("`use_tpu_summary_optimization=True` and " "`use_tf_while_loop=False` is not supported") self._train_options = options self._train_dataset = train_dataset self._train_iter = None self._train_loop_fn = None def train( self, num_steps: Optional[tf.Tensor], ) -> Optional[Dict[Text, tf.Tensor]]: """See base class.""" self.train_loop_begin() if self._train_loop_fn is None: self._train_loop_fn = _create_train_loop_fn( self.train_step, options=self._train_options) if self._train_iter is None: self._train_iter = tf.nest.map_structure(iter, self.train_dataset) self._train_loop_fn(self._train_iter, num_steps) return self.train_loop_end() def train_loop_begin(self): """Called once at the beginning of the training loop. This method is called before dataset iterators creation. This is a good place to reset metrics that accumulate values over multiple steps of training. """ pass @abc.abstractmethod def train_step(self, iterator): """Implements one step of training. What a "step" consists of is up to the implementer. If using distribution strategies, the call to this method should take place in the "cross-replica context" for generality, to allow e.g. multiple iterator dequeues and calls to `strategy.run`. Note that if `use_tf_function=True`, all the code inside `train_step` should be tf.function compatible, as they will be traced with tf.function. This means you cannot put arbitrary python code in this function. If users have any numpy operations, they should be put in `train_loop_begin` or `train_loop_end` functions. Args: iterator: A tf.nest-compatible structure of tf.data Iterator or DistributedIterator. """ pass def train_loop_end(self) -> Optional[Dict[Text, tf.Tensor]]: """Called at the end of the training loop. This is a good place to get metric results. The value returned from this function will be returned as-is from the train() method. Returns: The function may return a dictionary of `Tensors`, which will be written to logs and as TensorBoard summaries. It can also be a nested dictionary, yielding a hierarchy of summary directories. """ pass @property def train_dataset(self): """Returns the train_dataset instance.""" return self._train_dataset @train_dataset.setter def train_dataset(self, train_dataset): """Set a new train dataset and replace with the existing one. Any unfinished work in the previous dataset will be discarded. Args: train_dataset: A tf.nest-compatible structure of tf.data.Dataset or DistributedDataset. """ self._train_dataset = train_dataset self._train_iter = None @dataclasses.dataclass(frozen=True) class StandardEvaluatorOptions: """Advanced options for the `orbit.StandardEvaluator`. Attributes: use_tf_function: A boolean indicating whether to apply `tf.function` to the training loop. This will only affect the body of the loop (involving `train_step`); `train_loop_begin` and `train_loop_end` will always be run in eager mode. """ use_tf_function: bool = True def _create_eval_loop_fn(eval_step_fn, options: StandardEvaluatorOptions): if options.use_tf_function: eval_step_fn = tf.function(eval_step_fn) return loop_fns.create_loop_fn(eval_step_fn) class StandardEvaluator(runner.AbstractEvaluator, metaclass=abc.ABCMeta): """Implements the standard functionality of AbstractEvaluator APIs.""" def __init__(self, eval_dataset, options: StandardEvaluatorOptions = None): """Construct a `StandardEvaluator` object. Args: eval_dataset: A tf.nest-compatible structure of tf.data.Dataset or DistributedDataset. options: An `orbit.StandardEvaluatorOptions` instance. """ self._eval_options = options or StandardEvaluatorOptions() self._eval_dataset = eval_dataset self._eval_loop_fn = None def evaluate( self, num_steps: Optional[tf.Tensor], ) -> Optional[Dict[Text, tf.Tensor]]: """See base class.""" outputs = self.eval_begin() # pylint: disable=assignment-from-no-return if self._eval_loop_fn is None: self._eval_loop_fn = _create_eval_loop_fn( self.eval_step, options=self._eval_options) eval_iter = tf.nest.map_structure(iter, self.eval_dataset) outputs = self._eval_loop_fn( eval_iter, num_steps, state=outputs, reduce_fn=self.eval_reduce) if outputs is None: return self.eval_end() else: return self.eval_end(outputs) def eval_begin(self) -> Any: """Called once at the beginning of the evaluation. This method is called before dataset iterators creation. This is a good place to reset metrics that accumulate values over the entire evaluation. Returns: An output which is passed as `state` argument into `eval_reduce` function. """ pass @abc.abstractmethod def eval_step(self, iterator) -> Any: """Implements one step of evaluation. What a "step" consists of is up to the implementer. If using distribution strategies, the call to this method should take place in the "cross-replica context" for generality, to allow e.g. multiple iterator dequeues and calls to `strategy.run`. Note that if `use_tf_function=True`, all the code inside `eval_step` should be tf.function compatible, as they will be traced with tf.function. This means you cannot put arbitrary python code in this function. If users have any numpy operations, they should be put in `eval_begin`, `eval_end` or `eval_reduce` functions. Args: iterator: A tf.nest-compatible structure of tf.data Iterator or DistributedIterator. Returns: An output which is passed as `step_outputs` argument into `eval_reduce` function. """ pass def eval_end(self, *args) -> Optional[Dict[Text, tf.Tensor]]: """Called at the end of the evaluation. This is a good place to get metric results. The value returned from this function will be returned as-is from the evaluate() method. Args: *args: the outputs from `eval_reduce` for the last eval step. Returns: The function may return a dictionary of `Tensors`, which will be written to logs and as TensorBoard summaries. It can also be a nested dictionary, yielding a hierarchy of summary directories. """ pass def eval_reduce(self, state=None, step_outputs=None) -> Any: """A function to do the reduction on the evaluation outputs per step. This is useful for passing states throughout evaluation. E.g. it can be used to maintain the output losses from all the evaluation steps, and compute the mean loss in `eval_end` function. Args: state: A maintained state throughout the evaluation. step_outputs: Outputs from the current evaluation step. Returns: An output which is passed as `state` argument into `eval_reduce` function for the next step. After evaluation is finished, the output from last step will be passed into `eval_end` function. """ pass @property def eval_dataset(self): """Returns the train_datase instance.""" return self._eval_dataset @eval_dataset.setter def eval_dataset(self, eval_dataset): """Set a new eval dataset and replace with the existing one. Args: eval_dataset: A tf.nest-compatible structure of tf.data.Dataset or DistributedDataset. """ self._eval_dataset = eval_dataset