# Copyright 2019 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Defining common flags used across all BERT models/applications.""" from absl import flags def define_common_bert_flags(): """Define the flags related to TPU's.""" flags.DEFINE_string('bert_config_file', None, 'Bert configuration file to define core bert layers.') flags.DEFINE_string('model_dir', None, ( 'The directory where the model weights and training/evaluation summaries ' 'are stored. If not specified, save to /tmp/bert20/.')) flags.DEFINE_string('tpu', '', 'TPU address to connect to.') flags.DEFINE_string( 'init_checkpoint', None, 'Initial checkpoint (usually from a pre-trained BERT model).') flags.DEFINE_enum( 'strategy_type', 'mirror', ['tpu', 'mirror'], 'Distribution Strategy type to use for training. `tpu` uses ' 'TPUStrategy for running on TPUs, `mirror` uses GPUs with ' 'single host.') flags.DEFINE_integer('num_train_epochs', 3, 'Total number of training epochs to perform.') flags.DEFINE_integer( 'steps_per_loop', 200, 'Number of steps per graph-mode loop. Only training step ' 'happens inside the loop. Callbacks will not be called ' 'inside.') flags.DEFINE_float('learning_rate', 5e-5, 'The initial learning rate for Adam.')