# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for tfgan.examples.cifar.networks.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np import tensorflow as tf import networks class NetworksTest(tf.test.TestCase): def test_generator(self): tf.set_random_seed(1234) batch_size = 100 noise = tf.random_normal([batch_size, 64]) image = networks.generator(noise) with self.test_session(use_gpu=True) as sess: sess.run(tf.global_variables_initializer()) image_np = image.eval() self.assertAllEqual([batch_size, 32, 32, 3], image_np.shape) self.assertTrue(np.all(np.abs(image_np) <= 1)) def test_generator_conditional(self): tf.set_random_seed(1234) batch_size = 100 noise = tf.random_normal([batch_size, 64]) conditioning = tf.one_hot([0] * batch_size, 10) image = networks.conditional_generator((noise, conditioning)) with self.test_session(use_gpu=True) as sess: sess.run(tf.global_variables_initializer()) image_np = image.eval() self.assertAllEqual([batch_size, 32, 32, 3], image_np.shape) self.assertTrue(np.all(np.abs(image_np) <= 1)) def test_discriminator(self): batch_size = 5 image = tf.random_uniform([batch_size, 32, 32, 3], -1, 1) dis_output = networks.discriminator(image, None) with self.test_session(use_gpu=True) as sess: sess.run(tf.global_variables_initializer()) dis_output_np = dis_output.eval() self.assertAllEqual([batch_size, 1], dis_output_np.shape) def test_discriminator_conditional(self): batch_size = 5 image = tf.random_uniform([batch_size, 32, 32, 3], -1, 1) conditioning = (None, tf.one_hot([0] * batch_size, 10)) dis_output = networks.conditional_discriminator(image, conditioning) with self.test_session(use_gpu=True) as sess: sess.run(tf.global_variables_initializer()) dis_output_np = dis_output.eval() self.assertAllEqual([batch_size, 1], dis_output_np.shape) if __name__ == '__main__': tf.test.main()