# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Contains code for loading and preprocessing the CIFAR data.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import tensorflow as tf from slim.datasets import dataset_factory as datasets slim = tf.contrib.slim def provide_data(batch_size, dataset_dir, dataset_name='cifar10', split_name='train', one_hot=True): """Provides batches of CIFAR data. Args: batch_size: The number of images in each batch. dataset_dir: The directory where the CIFAR10 data can be found. If `None`, use default. dataset_name: Name of the dataset. split_name: Should be either 'train' or 'test'. one_hot: Output one hot vector instead of int32 label. Returns: images: A `Tensor` of size [batch_size, 32, 32, 3]. Output pixel values are in [-1, 1]. labels: Either (1) one_hot_labels if `one_hot` is `True` A `Tensor` of size [batch_size, num_classes], where each row has a single element set to one and the rest set to zeros. Or (2) labels if `one_hot` is `False` A `Tensor` of size [batch_size], holding the labels as integers. num_samples: The number of total samples in the dataset. num_classes: The number of classes in the dataset. Raises: ValueError: if the split_name is not either 'train' or 'test'. """ dataset = datasets.get_dataset( dataset_name, split_name, dataset_dir=dataset_dir) provider = slim.dataset_data_provider.DatasetDataProvider( dataset, common_queue_capacity=5 * batch_size, common_queue_min=batch_size, shuffle=(split_name == 'train')) [image, label] = provider.get(['image', 'label']) # Preprocess the images. image = (tf.to_float(image) - 128.0) / 128.0 # Creates a QueueRunner for the pre-fetching operation. images, labels = tf.train.batch( [image, label], batch_size=batch_size, num_threads=32, capacity=5 * batch_size) labels = tf.reshape(labels, [-1]) if one_hot: labels = tf.one_hot(labels, dataset.num_classes) return images, labels, dataset.num_samples, dataset.num_classes def float_image_to_uint8(image): """Convert float image in [-1, 1) to [0, 255] uint8. Note that `1` gets mapped to `0`, but `1 - epsilon` gets mapped to 255. Args: image: An image tensor. Values should be in [-1, 1). Returns: Input image cast to uint8 and with integer values in [0, 255]. """ image = (image * 128.0) + 128.0 return tf.cast(image, tf.uint8)