# Copyright 2018 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== from __future__ import absolute_import from __future__ import division from __future__ import print_function import unittest import tensorflow as tf # pylint: disable=g-bad-import-order from tensorflow.python import eager as tfe # pylint: disable=g-bad-import-order from official.r1.mnist import mnist from official.r1.mnist import mnist_eager from official.utils.misc import keras_utils def device(): return '/device:GPU:0' if tfe.context.num_gpus() else '/device:CPU:0' def data_format(): return 'channels_first' if tfe.context.num_gpus() else 'channels_last' def random_dataset(): batch_size = 64 images = tf.random_normal([batch_size, 784]) labels = tf.random_uniform([batch_size], minval=0, maxval=10, dtype=tf.int32) return tf.data.Dataset.from_tensors((images, labels)) def train(defun=False): model = mnist.create_model(data_format()) if defun: model.call = tf.function(model.call) optimizer = tf.train.GradientDescentOptimizer(learning_rate=0.01) dataset = random_dataset() with tf.device(device()): mnist_eager.train(model, optimizer, dataset, step_counter=tf.train.get_or_create_global_step()) def evaluate(defun=False): model = mnist.create_model(data_format()) dataset = random_dataset() if defun: model.call = tf.function(model.call) with tf.device(device()): mnist_eager.test(model, dataset) class MNISTTest(tf.test.TestCase): """Run tests for MNIST eager loop. MNIST eager uses contrib and will not work with TF 2.0. All tests are disabled if using TF 2.0. """ def setUp(self): if not keras_utils.is_v2_0(): tf.compat.v1.enable_v2_behavior() super(MNISTTest, self).setUp() @unittest.skipIf(keras_utils.is_v2_0(), 'TF 1.0 only test.') def test_train(self): train(defun=False) @unittest.skipIf(keras_utils.is_v2_0(), 'TF 1.0 only test.') def test_evaluate(self): evaluate(defun=False) @unittest.skipIf(keras_utils.is_v2_0(), 'TF 1.0 only test.') def test_train_with_defun(self): train(defun=True) @unittest.skipIf(keras_utils.is_v2_0(), 'TF 1.0 only test.') def test_evaluate_with_defun(self): evaluate(defun=True) if __name__ == '__main__': tf.test.main()