# Copyright 2018 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Miscellaneous functions that can be called by models.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import numbers import tensorflow as tf def past_stop_threshold(stop_threshold, eval_metric): """Return a boolean representing whether a model should be stopped. Args: stop_threshold: float, the threshold above which a model should stop training. eval_metric: float, the current value of the relevant metric to check. Returns: True if training should stop, False otherwise. Raises: ValueError: if either stop_threshold or eval_metric is not a number """ if stop_threshold is None: return False if not isinstance(stop_threshold, numbers.Number): raise ValueError("Threshold for checking stop conditions must be a number.") if not isinstance(eval_metric, numbers.Number): raise ValueError("Eval metric being checked against stop conditions " "must be a number.") if eval_metric >= stop_threshold: tf.logging.info( "Stop threshold of {} was passed with metric value {}.".format( stop_threshold, eval_metric)) return True return False